
ENGR 105: Feedback Control Design
Winter 2013

Lecture 3 - Solving for Dynamic Response
Friday, January 11, 2013

Today’s Objectives

1. review the solution of homogeneous differential equations in the time domain (using assumed
solution)

2. solve differential equations using the Laplace transform

Reading: FPE Section 3.1, Appendix A.1.1

Solving for the dynamic response

The models of systems we obtain from the modeling techniques described in the last lecture cane
put in a form:

dny
dtn + a1

dn−1y
dtn−1 + · · ·+ any = b1

dmu
dtm + b2

dm−1u
dtm−1 + · · ·+ bm+1u

These are linear, time-invariant (LTI), constant-coefficient ODEs describing a single input, single
output (SISO) system. While not everything can be put into this form, many systems can. There
are so many analytical tools available for systems of this form that it often makes sense to try to
fit the system into this form as a starting point.

In an ODE class, these equations are solved for two solutions:

Homogeneous Particular

• input = 0 • depends on input
• free response • forced response
• natural response

1 Time domain solutions

The homogeneous solution is straightforward:

Let y = Aest

Then ẏ = Asest

And ÿ = As2est

...
⇒ substitute this assumed solution into the ODE and then solve for A and s.

Some figures in this document c©2010 Pearson (from the textbook Feedback Control of Dynamic Systems, 6th Ed.)
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Mass-spring-damper example

mÿ + bẏ + ky = 0

mAs2est + bAsest + kAest = 0

⇒ ms2 + bs+ k = 0 (this is the characteristic equation)

s = −b±
√
b2−4mk
2m

There are two solutions:

s1 = − b
2m +

√
b2−4mk
2m

s2 = − b
2m −

√
b2−4mk
2m

The complete solution can be written as: y = A1e
s1t +A2e

s2t

How do we get values for A1 and A2? You need to define the initial conditions:

y(0) = A1 +A2

ẏ(0) = s1A1 + s2A2

We have two equations and two unknowns, so you can solve for A1 and A2.

What do these solutions look like?

Here are two cases:

(a) If b2 > 4mk, both s1 and s2 are negative and real

Here is a plot of y = A1e
s1t +A2e

s2t, where s1, s2 < 0 and real:

% overdamped 
m = 0.1; 
b = 1; 
k = 1; 
ydot0 = 0; 
y0 = 1; 
s1 = (-b + sqrt(b^2-4*m*k))/(2*m); 
s2 = (-b - sqrt(b^2-4*m*k))/(2*m); 
A1 = (ydot0-y0*s2)/(s1-s2); 
A2 = (ydot0-y0*s1)/(s2-s1); 
t = 0:0.1:10; 
y = A1*exp(s1*t) + A2*exp(s2*t); 
figure 
plot(t,y) 
xlabel('time') 
ylabel('position') 
  
  
% underdamped 
m = 0.1; 
b = 0.1; 
k = 1; 
ydot0 = 0; 
y0 = 1; 
s1 = (-b + sqrt(b^2-4*m*k))/(2*m); 
s2 = (-b - sqrt(b^2-4*m*k))/(2*m); 
A1 = (ydot0-y0*s2)/(s1-s2); 
A2 = (ydot0-y0*s1)/(s2-s1); 
t = 0:0.1:10; 
y = A1*exp(s1*t) + A2*exp(s2*t); 
figure 
plot(t,y) 
xlabel('time') 
ylabel('position') 
!
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(b) If b2 < 4mk, s1 and s2 are complex (in fact, complex conjugates)

These will oscillate, since Euler’s formula says that: ejθ = cos θ + j sin θ

Here is a plot of y = A1e
s1t +A2e

s2t, where s1, s2 are complex with negative real parts:

% overdamped 
m = 0.1; 
b = 1; 
k = 1; 
ydot0 = 0; 
y0 = 1; 
s1 = (-b + sqrt(b^2-4*m*k))/(2*m); 
s2 = (-b - sqrt(b^2-4*m*k))/(2*m); 
A1 = (ydot0-y0*s2)/(s1-s2); 
A2 = (ydot0-y0*s1)/(s2-s1); 
t = 0:0.1:10; 
y = A1*exp(s1*t) + A2*exp(s2*t); 
figure 
plot(t,y) 
xlabel('time') 
ylabel('position') 
  
  
% underdamped 
m = 0.1; 
b = 0.1; 
k = 1; 
ydot0 = 0; 
y0 = 1; 
s1 = (-b + sqrt(b^2-4*m*k))/(2*m); 
s2 = (-b - sqrt(b^2-4*m*k))/(2*m); 
A1 = (ydot0-y0*s2)/(s1-s2); 
A2 = (ydot0-y0*s1)/(s2-s1); 
t = 0:0.1:10; 
y = A1*exp(s1*t) + A2*exp(s2*t); 
figure 
plot(t,y) 
xlabel('time') 
ylabel('position') 
!

• Is there another possible case?

• Solutions to equations of this form are always real roots or complex conjugate pairs. (Why?)

Now imagine there is a force applied to the mass, so the equation of motion becomes mÿ+bẏ+ky =
f . There are several ways to find the particular response to such a system using time-domain
analysis, and these depend on the form of f . We will not review these techniques in this class
because there is another solution technique that handles the homogeneous and particular solutions
at once. It also provides greater insight about system structure. This is the Laplace transform.

2 Laplace transforms

A Laplace transform transforms:

1. a function of a real variable (like time) to a function of a complex variable (like s)

2. problems with differential equations to algebra

3. convolution to multiplication

The solution process for ODEs looks like:

ODE −→ algebra problem −→ solution of ODE
L (sometimes stop here) L−1
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Definition of the Laplace transform

Given a function f(t),

L[f(t)] = F (s) =
∫∞
0− f(τ)e−sτdτ

Reσ

Im

ω

s is a complex number: s = σ + jω

Superposition

It naturally follows that:

L[f1(t) + af2(t)] = F1(s) + aF2(s)

Exponential

Since the exponential is such an important building block in our ODEs, it makes sense to look in
more detail at the Laplace transform of the exponential:

f(t) = Ae−αt t ≥ 0

L[f(t)] =
∫∞
0 Ae−ατe−sτdτ

= A
∫∞
0 e−(α+s)τdτ

= −A
α+se

−(α+s)τ |∞0

= −A
α+s

(
e−(α+s)·∞ − e−(α+s)·0

)
= −A

α+s (0− 1) = A
α+s

Step function

f(t) = A or f(t) = A · 1(t), where 1(t) =

{
1 t > 0
0 otherwise

L[f(t)] =
∫∞
0 Ae−sτdτ

= A
−se
−sτ |∞0

= A
s

Notice that the exponential converges to a step as α→ 0.
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Differentiation

Here is the result:

L
[
df(t)
dt

]
= sF (s)− f(0)

This is a great example of integration by parts:

F (s) =
∫∞
0 f(τ)e−sτdτ = f(τ) e

−sτ

−s |
∞
0 −

∫∞
0

[
df(τ)
dτ

]
e−sτ

−s dτ

(note that
∫
u dv = u v −

∫
v du)

= −1
s

[
f(∞) · 0− f(0)− L

{
df(t)
dt

}]
⇒ sF (s) = f(0) + L

[
df(t)
dt

]

RC circuit example

+

-
vi

R

C

+

-
vo

v̇o = 1
RC (vi − vo)

sVo(s)− vo(0) = 1
RC (Vi(s)− Vo(s))

Vo(s)(RCs+ 1) = Vi(s) + vo(0)RC

Vo(s) = RC vo(0)
RCs+1 + Vi(s)

RCs+1

(free/homogeneous and forced/particular)

We have just developed the transfer function for the RC circuit. Now we will solve for vo(t).

vo(t) = L−1[Vo(s)] = L−1
[
RC vo(0)
RCs+1

]
+ L−1

[
Vi(s)
RCs+1

]
↑ vo(0)e−

t
RC

Particular solution for a step input Vi(s) = A
s :

vo(t) = vo(0)e−
t
RC + L−1

[
A
RC

s(s+ 1
RC

)

]
↑ L−1

[
A
s −

A
s+ 1

RC

]
= A−Ae

−t
RC

⇒ vo(t) = vo(0)e
−t
RC +A(1− e

−t
RC )
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