
ENGR 105: Feedback Control Design
Winter 2013

Lecture 12 - PID and Derivative Control
Monday, February 4, 2013

Today’s Objectives

1. introduce the PID controller and its e↵ect on stability and system type
2. show how derivative (actually, PD) control a↵ects system behavior
3. explain practical implementation issues associated with derivative control
4. present the lead compensator, an approximation of derivative control
5. show the e↵ect of a zero (s in the transfer function numerator) on system behavior

Reading: FPE Sections 4.3,

1 PID Controller

For the third control knob we can add the derivative of the error to the control signal:

U(s) = KpE(s) +KdsE(s) +
Ki

s
E(s)

D(s) =
U(s)

E(s)
= Kp +Kds+

Ki

s

u(t) = Kp

"
“spring”

e(t) +Kd

"
“damper”

ė(t) +Ki

Z t

0

e(t) dt

This is easy enough to implement when there is a direct measurement of ė(t) available. In the
car-following example, radar usually gives both range and range rate, so this measurement exists.
However, it can be tricky to get ė(t) from measurements of e(t) alone – this will be discussed in
more detail later.

Let’s look at our example with the complete PID controller:

G(s) =
1

s (ms+ b)
D(s) =

Kps+Kds2 +Ki

s

1



Y (s)

R(s)
=

DG

1 +DG
=

Kds2 +Kps+Ki

ms3 + (b+Kd)| {z }
derivative gain

adds to damping

and adds

another zero

s2 +Kps+Ki

Checking stability with the Routh Array: s3 + (b+Kd)

m s2 + Kp

m s+ Ki
m = 0

Row 3: 1

Kp/m 0

Row 2:

(b+Kd)

m
Ki/m

Row 1:

Kp/m � Ki/(b+Kd)

Row 0:

Ki/m

So the conditions for stability are:

b+Kd > 0

Ki > 0

Kp >
m

b+Kd
Ki

Checking system type:

E(s)

R(s)
=

1

1 +DG
=

s2 (ms+ b)

ms3 + (b+Kd) s2 +Kps+Ki
Type 2

E(s)

W (s)
=

�G

1 +DG
=

s

ms3 + (b+Kd) s2 +Kps+Ki
Type 1

The addition of derivative control did not change the system type at all.

PID is often used because the control gains have (at least roughly) intuitive meanings and can often
be tuned by hand:

Speed of response ! Kp

Damping or overshoot ! Kd

Steady-state error rejection ! Ki
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2 Derivative Control

When the steady-state error response does not require integral control, a PD controller may be
used instead.

KP + KDs G(s)R(s) E(s) U(s) Y(s)
+

-

Y (s)

R(s)
=

(Kp +Kds)G(s)

1 + (Kp +Kds)G(s)

For the transfer function G(s) =
1

ms2 + bs

) Y (s)

R(s)
=

Kp +Kds

ms2 + (b+Kd) s+Kp

The denominator looks like a familiar form (now the system is second order since there is no integral
control), but the system has a zero.

What happens if we put the controller in the feedback loop instead of the forward path?

KP + KDs

G(s)R(s) E(s) Y(s)+

-

E = R� Y (Kp +Kds)

Y = E G ! E =

Y

G
Y

G
= R� Y (Kp +Kds)

Y = GR� Y G (Kp +Kds)

GR = Y (1 +G (Kp +Kds))

Y (s)

R(s)
=

G

1 +G (Kp +Kds)
=

1

ms2 + (b+Kd)s+Kp
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To deal with the steady-state error, we can scale the reference. This has no e↵ect on the stability
of the control system since it occurs outside the feedback loop:

KP + KDs

G(s)R(s) E(s) Y(s)+

-
KP

Y (s)

R(s)
=

Kp

ms2 + (b+Kd) s+Kp
! steady state gain = 1

If we equate the terms to those in the standard form:

Kp

ms2 + (b+Kd) s+Kp
=

Kp/m

s2 + (b+Kd)

m s+Kp/m
=

!n
2

s2 + 2⇣!ns+ !n
2

| {z }
scaling by a constant

just scales the output

Kp can be used to set the natural frequency

Kd can be used to set the damping ratio

The behavior of the closed-loop poles as we change gains can be viewed graphically:}
Re

Im
X

X

KP
increasing

KD
increasing

We can use these gains to achieve
specifications like rise time and peak
overshoot simultaneously.
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3 Practical Issues with Derivative Control

Derivative control can be a powerful tool in achieving the desired performance of a system. However,
there is a challenge that pure derivative control is not actually realizable!

D(s) =
Kp +Kds

1

) numerator has higher order than the denominator

Systems with a higher numerator order than denominator order cannot be built with passive ele-
ments like resistors, capacitors, and inductors. They also have issue with causality (outputs depend
on things that haven’t happened yet) and power. Consider a couple of example inputs:

s

s

ramp step

Finite input
gives an infi-
nite output

Output
changes before
the input does

In digital systems, we might think of approximating a derivative with a di↵erence.

t

y

ẏ(k) ⇡ y(k)� y(k � 1)

�T

This is inherently looking backwards and not
the true derivative.
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This approach often results in a very noisy signal since the di↵erencing process amplifies noise.

Suppose ym(k) = y(k) + n(k)

Then ẏm(k) =
y(k)�y(k�1)

�T +

n(k)�n(k�1)

�T

ym - measured output
y - actual output
n - noise

As �T ! 0, the approximation of the derivative gets better, but the noise amplification gets worse.

With very clean signals (like position signals from a high-resolution optical encoder) this may work
to approximate the derivative. In other cases, it can result in big problems.

The challenge of physically implementing a derivative is also a deciding factor in considering whether
to put the controller in the feedback or forward path:

KP + KDs G(s)R(s) U(s) Y(s)
+

-
need to di!erentiate
r(t) and y(t)

u(t) =Kp (r(t)� y(t))

+Kd (ṙ(t)� ẏ(t))

KP + KDs

G(s)R(s) Y(s)+

-
only di!erentiate
the output y(t)

u(t) =r(t)�Kpy(t)

�Kdẏ(t)

If the reference signal is noisy, it may be preferable to have the controller in the feedback path to
avoid di↵erentiating it. The feedback path is also better if the reference input makes step changes.
(What will the input u(t) try to do in such cases?).

4 The Lead Compensator

The issues with implementing pure derivative control can be resolved by using a lead compensator.
this is a circuit that can be built (remember the first homework assignment!) and filters out he
high frequency noise (this will be clearer in a couple of weeks).

The lead compensator is just the PD controller with a fast pole:

D(s) =
Kp +Kds

1

as+ 1

pole at s = �a
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As the value of a increases, the lead compensator resembles the PD controller more closely.

5 The E↵ect of a Zero

Another di↵erence between choosing to put the PD controller in the feedback path or the forward
path is the zero.

Y (s)

R(s)
=

Kp +Kds

ms2 + (b+Kd) s+Kp| {z }
forward path

Y (s)

R(s)
=

Kp

ms2 + (b+Kd) s+Kp| {z }
feedback path

What is the e↵ect of this zero? There are several ways to look at zeros and this will be the focus
of the next lecture. For now, consider breaking up the two parts of the numerator for the “forward
path” controller.

Y (s)

R(s)
=

Kp

ms2 + (b+Kd) s+Kp| {z }
our standard 2

nd

order system form

+ s
Kd

ms2 + (b+Kd) s+Kp| {z }
the derivative of the

standard 2

nd
order form

If Kd << Kp, the system response looks a lot like the standard second order system. In this case,
the zero location is far from the imaginary axis since

z =
Kp

Kd
is the zero location

Therefore, zeros that are far from the imaginary axis have little impact on the system behavior
when they are in the left half plane.

As Kd becomes larger, however, the system response includes more of this derivative term. This
can lead to, for instance, greater overshoot to a step response.
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