
ENGR 105: Feedback Control Design
Winter 2013

Lecture 13 - Zeros
Wednesday, February 6, 2013

Today’s Objectives

1. explain the e↵ects of zeros
2. show examples of how zeros a↵ect response
3. introduce the concept of non-minimum phase systems
4. demonstrate how zeros a↵ect the relationship between input and output

Reading: FPE Section 3.5

1 The e↵ects of zeros

Up to this point, most of our discussion of system responses has been focused on the poles int
he denominator of the transfer function. The poles represent the basic ”building blocks” of the
response and determine the system stability.

The zeros are also important in determining the system response, though they do not impact the
stability of the open-loop transfer function. Open-loop zeros do impact the stability of the closed-
loop transfer function. Furthermore, the zeros can give a lot of insight into the structure of a system.

Most fundamentally, zeros determine how much of each ”building block” appears in the system
response.

2 Examples of zeros

To see this, consider three transfer functions with the same characteristic equation:

s3 + 6s2 + 11s+ 6 = (s+ 1) (s+ 2) (s+ 3) = 0

(a) H(s) =
3s2 + 12s+ 11

s3 + 6s2 + 11s+ 6
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s+ 3

(b) H(s) =
6s+ 7

s3 + 6s2 + 11s+ 6

=

1

s+ 1

+

1

s+ 2

� 2

s+ 3

(c) H(s) =
2s� 1
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=
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The impulse response of each transfer function consists of some combination of the three basic
exponentials:

e�t e�2t e�3t

However, the di↵erent weightings of each term gives dramatically di↵erent responses.

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Contribution of each Pole

h
(t

)

Time(sec)

 

 

e−t

e−2t

e−3t

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Impulse Response

Time (sec)
A

m
p

lit
u

d
e

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1
Contribution of each Pole

h
(t

)

Time(sec)

 

 

e−t

e−2t

e−3t

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Impulse Response

Time (sec)

A
m

p
lit

u
d

e

(c)
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3 Non-minimum phase systems

The response in (c) is characteristic of a non-minimum phase system which has zeros located in
the right half plane. If a system has an odd number of right-half-plane zeros, its step response will
initially move in the opposite direction.

t

y

Y (s) = H(s)1s for system (c)

This characteristic can be seen in many real systems, including an inverted pendulum on a cart
and highly maneuverable jet aircraft. We’ll return to this later when we study frequency-domain
analysis (Bode plots in particular) and can look at phase plots.

4 Relationship of input to output

Zeros can also tell a lot about the structure of the system input in relation to the output. For
example, consider the two mass system:

m

F2

m

F1

x2x1

K1 K2 K3

Force Balances:

mass 2 F2 �K3x2 +K2 (x1 � x2) = m2ẍ2

)F2(s)�K3X2(s) +K2X1(s)�K2X2(s) = m2s
2X2(s)

F2(s) +K2X1(s) =
�
m2s

2
+K23

�
X2(s) {K23 = K2 +K3}
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mass 1 F1 �K1x1 +K2 (x2 � x1) = m1ẍ1

)F1(s) +K2X2(s) =
�
m1s

2
+K12

�
X1(s) {K12 = K1 +K2}

X1(s) =
K2

m1s2 +K12
X2(s) +

1

m1s2 +K12
F1(s)

) K2
2X2(s)

m1s2 +K12
+

K2F1(s)

m1s2 +K12
+ F2(s) =

�
m2s

2
+K23

�
X2(s)

X2(s) = G1F1(s) +G2F2(s)

G1(s) =
K2

m1m2s4 + (m1K23 +m2K12) s2 +
�
K12K23 �K2

2
�

The input F1 appears in the 4th derivative of the position X2. The system has a relative degree of
4 between input and output.

G2(s) =
m1s

2
+K12

m1m2s4 + (m1K23 +m2K12) s2 +
�
K12K23 �K2

2
�

The input F2 appears in the 2nd derivative of the position X2. The system has a relative degree of
2 corresponding to the two integrations needed to go from force to position.

+

Relative degree of the numerator and denominator polynomials gives a measure of how “far” (in
terms of integrators) the input is from the output.

The role of relative degree can also be seen in the Initial Value Theorem

lim

s!1
sF (s) = f(0+) (just after time zero)

If the system has at least one more pole than zero, the initial value of the system in response to a
step is equal to zero. In other words, the input must go through at least one integrator to reach
the output. Hence, the output does not change instantly.

If the system has the same number of poles and zeros, the output will change instantaneously in
response to a step input. Such direct feedthrough is not common in plants, but does occur often
in the system error in closed-loop:
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K 1R(s) E(s) Y(s)
+

- s(ms+b)
E(s) = R(s)� Y (s)

E(s)

R(s)
= 1

"
direct feedthrough

� Y (s)

R(s)
=

ms2 + bs

ms2 + bs +K| {z }
relative
degree
zero

This makes sense: a step change in the reference value will produce a step change in the error since
the plant cannot respond instantly (it has two integrators between input and output).

Finally, the open-loop poles of a transfer function help to determine the closed-loop poles.

K b(s)R(s) E(s) Y(s)
+

- a(s)

Y (s)

R(s)
=

K b(s)
a(s)

1 +K b(s)
a(s)

=

Kb(s)

a(s) +Kb(s)

Characteristic equation giving closed-loop poles is

1 +K
b(s)

a(s)
= 0 or a(s)

"
open-loop

poles

+Kb(s)

"
open-loop

zeros

= 0

The closed-loop poles can be described in terms of the open-loop poles, open-loop zeros and the
gain K. This is the concept behind the Root Locus.
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