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Today’s Objectives

1. define the Routh Array
2. apply the Routh Array to determine stability of a PI controller
3. examine the special case of a zero in the first column of the Routh Array

Reading: FPE Section 3.6

1 Define the Routh Array

The Routh Array (dating back to 1874) provides a way to analytically determine the stability of a
system when the characteristic equation is of higher order. It also gives insight into the range of
parameters for which a system is stable.

Consider a characteristic equation written in the form

sn + a1s
n−1 + a2s

n−2 + ...+ an−1s+ an = 0

Arrange the coefficients of the characteristic polynomial into two rows, beginning with the first and
second coefficients and followed by the even- and odd-numbered coefficients. Add subsequent rows
to form the Routh Array :

Row n sn: 1 a2 a4 ...

Row n− 1 sn−1: a1 a3 a5 ...

Row n− 2 sn−2: b1 b2 b3 ...

Row n− 3 sn−3: c1 c2 c3 ...

...
...

...
...

...

Row 2 s2: ∗ ∗

Row 1 s: ∗

Row 0 s0: ∗
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Where:

b1 =

− det

[
1 a2
a1 a3

]
a1

b2 =

− det

[
1 a4
a1 a5

]
a1

c1 =

− det

[
a1 a3
b1 b2

]
b1

c2 =

− det

[
a1 a5
b1 b3

]
b1

... and so on ...

All roots of the characteristic equation are negative if and only if all terms in the first column are
greater than zero. The characteristic equation has as many right half plane roots as there are sign
changes in the first column (for example, + +−− is one sign change; + +−+ is two sign changes).

A slight modification to this method is necessary when only the first column contains a zero (and
therefore is neither strictly positive or negative).

2 Application to the PI controller (car-following example)

With the PI controller in the car following example, the system type was correct but the charac-
teristic equation became third order. We can check its stability using the Routh Array:

ms3 + bs2 +Kps+Ki = 0

⇒ s3 +
b

m
s2 +

Kp

m
s+

Ki

m
= 0

We then form the Routh array:

Row 3: 1 Kp/m 0

Row 2: b/m Ki/m 0

Row 1: b1

Row 0: c1
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b1 =

− det

[
1 Kp/m
b/m Ki/m

]
b/m

=
− (Ki/m− bKp/m2)

b/m
= Kp/m− Ki/b

c1 =

− det

[
b/m Ki/m

(Kp/m− Ki/b) 0

]
(Kp/m− Ki/b)

=
(Kp/m− Ki/b) (Ki/m)

(Kp/m− Ki/b)
= Ki/m

The first column therefore looks like:

Row 3: 1 Always > 0

Row 2: b/m Aways > 0 since b,m > 0

Row 1: Kp/m− Ki/b ⇒ Kp > Ki (m/b)

Row 0: Ki/m ⇒ Ki > 0

We can envision the region of stable gains graphically:

(a)
(b)

stable gain
choices

Kp

Ki

m

b What if we chose gains at
point (a) or (b)?
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Let’s look at the first column of the Routh array for the two cases (a) and (b):

Gains at (a) Gains at (b)

Row 3: 1 1

Row 2: b/m b/m

Row 1: Kp/m− Ki/b > 0 Kp/m− Ki/b < 0

Row 0: Ki/m < 0 Ki/m > 0

⇓ ⇓

1 sign change 2 sign changes

1 unstable root 2 unstable roots

3 Modification for zero in the first column

If the first element in a row of the Routh Array is zero, the array requires modifications to avoid
dividing by zero. The idea here is to replace the zero with a small positive constant ε > 0, proceed
as before, then apply the stability criterion by taking the limit as ε→ 0.

For example, if our system has no damping, b = 0.

Row 3: 1 Kp/m 0

Row 2: 0→ replace with ε Ki/m 0

Row 1: −Ki/mε+ Kp/m

Row 0: Ki/m

For stability,

Ki/m > 0

lim
ε→0

−Ki/mε+ Kp/m > 0

lim
ε→0

Kp > Ki/ε not possible!
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Without damping, the system will have two unstable roots for any positive Kp and Ki.

Further modification is required in the special case when an entire row of the Routh Array is zero
(see the text for this process).

The proof of the Routh Array is rather involved (though a simpler proof appeared about 125 years
after the original). It shouldn’t be too surprising, however, that the coefficients of the characteristic
equation give information about the sign of the roots.

Back to the example, with PI control, the transfer function becomes

Y (s)

R(s)
=
Xf (s)

R(s)
=

Kps+Ki

ms3 + bs2 +Kps+Ki

=
Kp

m
s+ Ki

m

s3 +
b

m︸︷︷︸
set by
system

s2 +
Kp

m
s+

Ki

m︸ ︷︷ ︸
we can
choose

We can choose Kp and Ki to guarantee stability if b > 0, but we cannot place all three poles where
we want them with only two control gains.
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