
ENGR 105: Feedback Control Design
Winter 2013

Lecture 15 - Root Locus Analysis
Monday, February 11, 2013

Today’s Objectives

1. definition of the root locus
2. relationship between root locus and phase
3. the first two rules for drawing the root locus

Reading: FPE Sections 5.1, 5.2

1 Root Locus

Zeros in an open-loop transfer function influence the closed-loop poles when a feedback loop is
closed:

D(s) G(s)R(s) E(s) U(s) Y(s)
+

-

This system is stable if the roots of 1 +D(s)G(s) = 0 have negative real parts.

We can rewrite this in terms of a control gain K and the open loop poles and zeros,

1 +K
b(s)

a(s)
= 0

) a(s)
"

open loop

poles

+Kb(s)
"

open loop

zeros

= 0

solutions to this
equation are the
closed-loop poles

If we have D(s) = K, then a(s) and b(s) are just the poles and zeros of G(s). If the controller is
more complicated and has dynamics itself, then a(s) and b(s) will be a combination of plant and
controller.
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The key idea behind a root locus analysis is to be able to see how pole locations vary with the
system gain. In our simple proportional control of the car follower,

D(s) = K G(s) =
1

ms2 + bs

Characteristic equation: ms2 + bs+K = 0

How do the roots vary as the gain changes?

s =
�b±

p
b2 � 4mK

2m
when K = 0,
poles are at s = 0,� b

m

-b
m

XX

As K is increased, the open loop poles move
toward one another before breaking away from
the real axis and moving toward infinity.

This is known as a root locus and shows us all
possible locations of the closed-loop poles.

The root locus was developed by Walter R Evans (1948) specifically for investigating aircraft
dynamic responses. Although developed before computers, the root locus is still useful now because:

• The root locus rules provide a lot of intuition about closed-loop system behavior.

• MATLAB can generate a root locus very quickly, giving a good graphical description of the
changing system response

In order to perform root locus analysis, we first need to arrange our characteristic equation to fit
the following basic form:

a(s) +Kb(s) = 0 or 1 +K
b(s)

a(s)
= 0

Where a(s) and b(s) are monic (the highest power of s has a coe�cient of 1). If our system has
several gains, we can do this for each one separately.
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For example, if

Y (s)

R(s)
=

Kds+Kp

ms2 + (b+Kd) s+Kp

) ms2 + (b+Kd) s+Kp = 0

Kp
⇥
ms2 + (b+Kd) s

⇤
+Kp = 0

1 +Kp
1

m
"

not monic

(not =1)

s2 + (b+Kd) s
= 0

) 1 +

✓
Kp

m

◆
1

s2 +
⇣
b+Kd
m

⌘
s
= 0

K =
Kp

m
, b(s) = 1, a(s) = s2 +

✓
b+Kd

m

◆
s

Kd

⇥
ms2 + bs+Kp

⇤
+Kds = 0

1 +Kd
s

ms2 + bs+Kp
= 0

) 1 +

✓
Kd

m

◆
s

s2 +
�

b
m

�
s+ Kp

m

= 0

K =
Kd

m
, b(s) = s, a(s) = s2 +

b

m
s+

Kp

m

We can study the e↵ects of changing either gain (one at a time), but we have to use di↵erent values
of a(s) and b(s) to do this.
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2 Phase and the Root Locus

Taking a deeper look at 1 +K b(S)
a(s) = 0, we find that

K
b(s)

a(s)
= K

Q
m
(s� zi)

Q
n
(s� pi)

is just a complex number.

In order to satisfy the characteristic equation, we need to have

K
b(s)

a(s)
= �1

Therefore, this complex number has a magnitude of 1 and a phase of 180�.

So the root locus is the set of all points s such that:

K
b(s)

a(s)
= �1, which means that

����K
b(s)

a(s)

���� = 1 & \K b(s)

a(s)
= 180�

We will now take a closer look at what points on the s-plane look like, and how we might relate
them to one another. Specifically we will relate an arbitrary point s to the location of a zero, zi.

For any point s = � + j!, s � zi is also a
complex number.

s� zi = (� � �z) + j (! � !z)

= rie
j i

This is simply a way of expressing the distance
and angle between a point s and zero zi.

Similarly, we can express the distance between
the point s and a pole pi as

s� pi = lie
j�i
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With these complex distances expressed in exponential form, the root locus condition can be re-
intrepreted.

1 =

������
K

Q
m
(s� zi)

Q
n
(s� pi)

������
=

������
K

Q
m

�
riej i

�

Q
n
(liej�i)

������
= K

Q
m
ri

Q
n
li

This implies that for a point to lie on the root locus,

K

✓
product of distances to each zero

product of distances to each pole

◆
= 1

Another conclusion can be reached by looking at the angle:

\K

Q
m
riej i

Q
n
liej�i

= \K

Q
m
riej 1ej 2 . . . ej m

Q
n
liej�1ej�2 . . . ej�n

= \

0

@K

Q
m
ri

Q
n
li

1

A · e
j( 1+ 2+...+ m)

ej(�1+�2+...+�n)

= \ej( 1+ 2+...+ m)

ej(�1+�2+...+�n)

= \ej( 1+ 2+...+ m��1��2�...��n)

=
X

m

 i

"
sum of

angles to

each zero

�
X

n

�i

"
sum of

angles to

each pole

= 180� + 360� (l � i) for some integer l
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Example

Consider this system with two poles and no zeros. Check three test points A, B and C to see if
they lie on the root locus:

XX
A B

C
_

pole 2 pole 1

A: �1 = 180� (line goes from pole to test point)

�2 = 180�
X

 i � �i = �360� 6= 180�

This point is not on the root locus

B: �1 = 180�

�2 = 0�
X

 i � �i = �180�

on root locus

C: �1 = 90� + ↵

�2 = 90� � ↵
X

 i � �i = �180�

on root locus

3 Root Locus Rules

This means we can apply a simple check to any point in the plane to see if it lies on the root locus.
However, we really don’t want to check every point in the plane! We want some rules to use instead.

As we develop these rules, we often think of what happens as we increase the gain K from 0 to
infinity.
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Rule 1 n branches of the locus start at poles a(s) = 0 (zero gain)
m of these to to zeros b(s) = 0

Since a(s) +Kb(s) = 0 K = 0 ) a(s) = 0

b(s) +
1

K
a(s) = 0 K ! 1 ) b(s) = 0

XX

If a system has 2 poles and 1
zero, it has two branches. One
goes to the zero and one goes
to infinity.

Which is which?

Rule 2 Points on the real axis to the left of an odd number of poles and zeros are on the locus

Test
Point

X

X

_

On the real axis:
X

 i �
X

�i = 0 for any complex conjugate pairs

) These don’t contribute

 i or �i = 180�for any pole or zero to the right

Need an odd number of 180� contributions

So in the previous example:

XX

pole
goes to

zero

pole
goes to
 in!nity
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