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Lecture 17 - Compensator Design
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Today’s Objectives

1. choosing a gain based on the root locus
2. definition, root locus, and implementation of a lead compensator
3. definition and example of notch compensator
4. definition of lag compensator

Reading: FPE Section 5.4

1 Choosing a controller gain based on the root locus

The root locus shows the di↵erent locations of the closed-loop poles as the gain K is varied. To
figure out which value of K corresponds to a particular pole location, we can use the magnitude
condition we derived back at the start of our discussion of the root locus:
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Say we wish to find the value of KP for a point on the root locus that is on the vertical asymptote
and a distance d from the real axis.
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In practice this is rarely done by hand. But this example shows that, with a properly scaled root
locus, gains can be calculated using a ruler.

2 Lead Compensator

As described previously, a lead compensator is similar in function to PD control but is often more
easily implemented. The transfer function for the lead compensator is

D(s) = K
s+ z

s+ p
z < p

With a lead compensator, the zero is always to the right of the pole on the real axis. The further
away from the origin the pole is, the more the lead compensator resembles PD control.

Consider our favorite plant with characteristic equation ms

2 + bs = 0. If the controller D(s) is a
lead compensator, the root locus will look like one of the two examples below, depending on how
far away (how large) p is.
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Lead compensators can be used to specify the location of the dominant pair of closed loop poles
in order to meet performance specifications like rise time and overshoot. How do we build a lead
compensator? One implementation is in the form of an analog circuit.
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Analog implementation has the advantage of simplicity and speed (bandwidth). However, the
controller characteristics are tied to these specific component values.

More commonly, compensators are implemented using digital control and microprocessors. To get
a sense of how this works, consider what the transfer functions means:
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To implement this control law digitally, we need a way represent di↵erentiation with di↵erences
between individual samples. There are a number of ways to do this discretization. The book shows
the Bilinear Transformation. The simplest to use as an example is Euler.
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So given choices of gain, zero, and pole locations, this is an algorithm that will implement the
lead compensator on a micro controller with sampling time �T . This algorithm requires knowing
the error at the current time step and the prior values of both the error and the input. Di↵erent
methods of discretizing will give di↵erent values for these coe�cients but generally tie the same
form (needing to know current information and one previous time step).

3 Notch Compensation

Consider the di↵erence between a co-located and non-colocated control input:
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The root locus shows the di↵erence–the lightly damped poles corresponding to the system resonance
go either to zeros or infinity.
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We can intentionally add zeros near lightly damped poles to get the same e↵ect. This is notch
compensation:
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We add two real poles to the system when we do this since we cannot add pure zeros. This works
very well for high frequency, lightly damped poles so that the added poles are far to the left. They
will still result in asymptotic behavior similar to the original system but hopefully at a higher gain
than the designer will use.

Be careful with this technique – it is not very robust if your system is uncertain! You are always
better o↵ designing the system correctly to avoid such problems if you can.

4 Lag Compensation

If z > p in D(s) = K

s+z
s+p you have a lag compensator. This resembles PI control but is more easily

understood after some discussion of frequency domain techniques.
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