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Winter 2013

Lecture 18 - Frequency Response Basics
Monday, February 25, 2013

Today’s Objectives

1. review the derivation of the the frequency response of a transfer function
2. revisit RC circuit example from a frequency response perspective
3. example comparing PD control and lead compensation

Reading: FPE Section 6.1

1 Review of Frequency Response

Thinking back to the concept of Fourier Transforms, a physical signal can be decomposed into a
series of sinusoids at di↵erent frequencies. If we can describe what happens to each one of these
sinusoids as it goes through a linear system, we can fully describe what happens to the signal.
Thus, we can think of describing a linear system by its frequency response.

When we discussed transfer functions, we derived the sinusoidal response of a linear system:
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Once the response from the stable poles dies out,
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This can be rearranged into a more insightful form:
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Remember, H(j!) is just a complex number. It has real and imaginary components, which can
also be described by a magnitude and phase:
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So a sine wave passed into a linear system produces a sine wave of the same frequency but di↵erent
magnitude and phase (once transients have died out). The transfer function describes the change
in the magnitude and phase.

u = A sin!t ! H(j!) ! y = A |H(j!)| sin (!t+ �)

If I have a more complicated input that I can write as a sum of sinusoids, the output is a simple
sum of sinusoids:
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We can think of this in two ways:

1. the transfer function fully describes the frequency response of the system

2. if we know the frequency response of the system, we can build the transfer function

In frequency-domain system identification, sinusoidal inputs are used to build an empirical transfer
function experimentally. This can be an extremely useful method of obtaining a system model.

The frequency domain can be very useful in thinking about systems with vibrating or oscillations
at specific frequencies. Audio systems and structural vibrations (in a car or bridge, for instance)
are good examples.

We can use these techniques to gain insight into systems we have already studied.

2 Example: RC circuit revisited
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Magnitude: |H(j!)| = 1p
R2C2!2

+ 1

DC gain (! = 0): H(0) = 1

H(j!) ! 0 as ! ! 1 (low pass filter)
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So our system response looks like:
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3 Example: PD control and lead compensation compared

Lead compensator: D(s) = K
Ts+ 1
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PD Control: D(s) = K (Ts+ 1)

D(j!) = K (Tj! + 1) same as lead compensator when ↵ = 0

|D (j!)| = K at low frequencies

|D (j!)| ! 1 as ! ! 1

� = \ (1 + j!T ) = 0

�
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Graphically:
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This gives a clearer explanation of lead compensation as a combination of PD control and a low-
pass filter. This is literally true. The lead compensator does not amplify high-frequency signals as
much as the PD controller. By changing the value of ↵, we can make the lead compensator match
the response (and behavior) of the PD controller over a certain frequency range.

Our intuition is that signals beyond the frequency range of interest represent “noise” that we do
not want to amplify.
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