Problem 1

part a

The characteristic equation is

$$s^{2} + cs + s + 1 = 0$$
$$(s^{2} + 1) + c(s + 1) = 0$$

So then

$$K = c$$

$$a(s) = s^{2} + 1$$

$$b(s) = s + 1$$

Note that both a(s) and b(s) are monic polynomials.

part b

part i

The characteristic equation is

$$1 + K_P G(s) + \frac{K_I}{s} G(s) + \frac{K_D s G(s)}{\tau s + 1} = 0$$

Note that this is not even a polynomial, so we first make it a polynomial, then extract K_D :

$$1 + K_P \frac{Ac(s)}{d(s)} + \frac{K_I Ac(s)}{sd(s)} + K_D \frac{sAc(s)}{(\tau s + 1)d(s)} = 0$$
$$\left(sd(s)(\tau s + 1) + (\tau s + 1)K_P Asc(s) + (\tau s + 1)K_I Ac(s)\right) + K_D \left(s^2 Ac(s)\right) = 0$$

So we have candidates for a(s) and b(s), but they aren't monic, so to use Evans' method directly, we have to divide by τ (to make the first polynomial monic) and A (to make the second polynomial monic). Then

$$K = K_D A / \tau$$

 $a(s) = sd(s)(s + 1/\tau) + K_P(s + 1/\tau) Asc(s) + (s + 1/\tau) K_I Ac(s)$
 $b(s) = s^2 c(s)$

Based on our assumption on G(s), both polynomials are monic

part ii

The characteristic equation is

$$1 + K_P G(s) + \frac{K_I}{s} G(s) + \frac{K_D s G(s)}{\tau s + 1}$$

Note that this is not even a polynomial, so we first make it a polynomial, then extract τ :

$$1 + K_{P}G(s) + \frac{K_{I}}{s}G(s) + \frac{K_{D}sG(s)}{\tau s + 1} = 0$$

$$(\tau + 1) + (\tau + 1)K_{P}G(s) + (\tau + 1)\frac{K_{I}}{s}G(s) + K_{D}sG(s) = 0$$

$$\tau\left(s + K_{P}\frac{Ac(s)}{d(s)}s + K_{I}\frac{Ac(s)}{d(s)}\right) + \frac{K_{I}Ac(s)}{sd(s)} + \frac{K_{P}sAc(s)}{d(s)} + K\frac{K_{P}Ac(s)}{d(s)} + 1 = 0$$

$$\tau\left(s^{2}d(s) + K_{P}As^{2}c(s) + K_{I}Asc(s)\right) + \left(K_{I}Ac(s) + K_{D}s^{2}Ac(s) + K_{P}Asc(s) + sd(s)\right) = 0$$

$$\left(s^{2}d(s) + K_{P}As^{2}c(s) + K_{I}Asc(s)\right) + \frac{1}{\tau}\left(K_{I}Ac(s) + K_{D}s^{2}Ac(s) + K_{P}Asc(s) + sd(s)\right) = 0$$

So then

$$K = \frac{1}{\tau}$$

$$b(s) = K_I A c(s) + K_D s^2 A c(s) + K_P A s c(s) + s d(s)$$

$$a(s) = s^2 d(s) + K_P A s^2 c(s) + K_I A s c(s)$$

Based on our assumption on G(s), both polynomials are monic. The reason we had to take $K = 1/\tau$ is that the order of b must be less than or equal to the order of a.

Problem 2

part a

We know where the locus will be on the real axis; the break-in and break-out angles are $\pm 90^{\circ}$.

part b

We know the locus will be left of the zero. Looking at the top pole, the departure angle is roughly given by

$$45^{\circ} - 90^{\circ} - \phi = 180^{\circ}$$
$$\phi = 135^{\circ}$$

part c

We know the locus will be left of the zero. The break-in and break-out angles are $\pm 90^{\circ}$.

•

part d

We know the locus will be between the two zeros, and between the two poles. The break-in and break-out angles are $\pm 90^{\circ}$.

$$45^{\circ} - 90^{\circ} - \phi = 180^{\circ}$$
$$\phi = 135^{\circ}$$

part e

We know the locus will be left of the real pole. Looking at the top pole, the departure angle is roughly given by

$$-90^{\circ} - 135^{\circ} - \phi = 180^{\circ}$$

 $\phi = -45^{\circ}$

The asymptotic angles are 180° , $\pm 60^{\circ}$. The center of the asymptotes is at the average of the poles, so on the real line, a bit left of the origin.

part f

We know the locus will be between the zero and the real pole. Looking at the top right pole, the departure angle is roughly given by

$$0 - 180^{\circ} - 90^{\circ} - (-45)^{\circ} - 45^{\circ} - \phi = 180^{\circ}$$
$$\phi = -90^{\circ}$$

So the poles move toward the real axis. One of the three closed-right-half-plane poles goes to the zero, and the other two break out at $\pm 90^{\circ}$. The asymptotic angles are $\pm 45^{\circ}$, $\pm 135^{\circ}$. The center of the asymptotes is roughly around the origin.

Problem 3

part a

$$\alpha = \frac{(0-1-5-10) - (-2-6)}{4-2} = -4$$

The poles at 0 and -1 approach each other and branch at $\pm 90^{\circ}$. There are two more poles than zeros, so the asymptotic angles are $\pm 90^{\circ}$.

```
s=tf('s'); \\ P=(s+2)*(s+6)/(s*(s+1)*(s+5)*(s+10)); \\ rlocus(P) \\ print -dpdf ~ ^Dropbox/E105-Win2013/Assignments/assignment6-nick/solutions
```


part b

The two poles are at $-3/2 \pm 3j$. There are no zeros, so the center of the asymptote is the average of the poles, which is -3/2. There are two poles, so the asymptotic angles are $\pm 90^{\circ}$.

```
s=tf('s');
P=1/(s^2+3*s+10);
rlocus(P)
print -dpdf ~/Dropbox/E105-Win2013/Assignments/assignment6-nick/solutions
```


part c

There are no zeros, so the center of the asymptote is the average of the poles, which is -8/3. There are three poles, so the asymptotic angles are $180^{\circ}, \pm 60^{\circ}$. The set $(\infty, -8]$ is on the locus, so we can infer that the pole at -8 goes to $-\infty$. The poles at zero branch with angles $\pm 90^{\circ}$.

```
s=tf('s');
P=1/(s^2*(s+8));
rlocus(P)
print -dpdf ~/Dropbox/E105-Win2013/Assignments/assignment6-nick/solutions
```


part d

There are poles at $0, -10, 1 \pm j$. The center of the asymptote is

$$\alpha = \frac{(0 - 10 - (1 + j) - (1 - j)) - (-2)}{4 - 1} = -10/3$$

There are three more poles than zeros, so the asymptotic angles are 180° , $\pm 60^{\circ}$. The set $(\infty, -10] \cup [-2, 0]$ is on the locus, so we can infer that the pole at -10 goes to $-\infty$ and the pole at 0 goes to -2. The poles at zero branch with angles $\pm 90^{\circ}$. The departure angle for first complex pole is

$$180^{\circ} - \angle(-2 - (-1 + j)) + \angle(0 - (1 + j)) + \angle((1 + j) - (1 + j)) + \angle(-10 - (1 + j))$$

$$= 180^{\circ} - 45^{\circ} + 135^{\circ} + 90 + 6.34$$

$$= 6.34$$

And for the other complex pole, it is -6.34.

```
s=tf('s');
P=(s+2)/(s*(s+10)*(s^2+2*s+2));
rlocus(P)
print -dpdf ~/Dropbox/E105-Win2013/Assignments/assignment6-nick/solutions
```


Problem 4

part a

The characteristic equation is

$$s^3 + 2s^2 + 10s + K$$

The Routh array is

$$\begin{array}{ccc}
1 & 10 \\
2 & K \\
\frac{K-20}{-2} \\
-K
\end{array}$$

So the conditions for stability are K>0 and K<20.

part b

The root locus is


```
s=tf('s');
P=(s+2)/(s*(s+2)*(s^2+2*s+10));
rlocus(P)
print -dpdf ~/Dropbox/E105-Win2013/Assignments/assignment6-nick/solutions
```