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Winter 2013

Lecture 18 - Frequency Response Basics
Monday, February 25, 2013

Today’s Objectives

1. review the derivation of the the frequency response of a transfer function
2. revisit RC circuit example from a frequency response perspective
3. example comparing PD control and lead compensation

Reading: FPE Section 6.1

1 Review of Frequency Response

Thinking back to the concept of Fourier Transforms, a physical signal can be decomposed into a
series of sinusoids at different frequencies. If we can describe what happens to each one of these
sinusoids as it goes through a linear system, we can fully describe what happens to the signal.
Thus, we can think of describing a linear system by its frequency response.

When we discussed transfer functions, we derived the sinusoidal response of a linear system:

U(s) H(s) Y(s) U(s) =
ωA

s2 + ω2

Y (s) =
a1

s− p1
+

a2
s− p2

+ . . .+
an

s− pn︸ ︷︷ ︸
poles of H(s)

+
a

s+ jω
+

ā

s− jω︸ ︷︷ ︸
sinusoidal response

Once the response from the stable poles dies out,

y(t) = ae−jωt + āejωt
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This can be rearranged into a more insightful form:

a = (s+ jω)Y (s)
∣∣
s=−jω

= (s+ jω)H(s)
Aω

s2 + ω2

∣∣∣∣
s=−jω

= H(s)
ωA

s− jω

∣∣∣∣
s=−jω

= − 1

2j
H(−jω)A

Also,

ā =
1

2j
H(jω)A

Remember, H(jω) is just a complex number. It has real and imaginary components, which can
also be described by a magnitude and phase:

hi

hr

φ

|H
(j
w
)|

φ = tan−1

(
hi

hr

)
H(jω) = |H(jω)| (cosφ+ j sinφ)

= |H(jω)| ejφ

H(−jω) = H̄(jω) = |H(jω)| e−jφ

y(t) = − 1

2j
|H(jω)|Ae−jφe−jωt +

1

2j
|H(jω)|Aejφejωt

= A |H(jω)| 1

2j

[
ej(ωt+φ) − e−j(ωt+φ)

]

= A |H(jω)| sin (ωt+ φ)→ steady-state relationship
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So a sine wave passed into a linear system produces a sine wave of the same frequency but different
magnitude and phase (once transients have died out). The transfer function describes the change
in the magnitude and phase.

u = A sinωt→ H(jω) → y = A |H(jω)| sin (ωt+ φ)

If I have a more complicated input that I can write as a sum of sinusoids, the output is a simple
sum of sinusoids:

u =
n∑

i=1

Ai sinωit→ H(jω) → y =
n∑

i=1

Ai |H(jωi)| sin (ωit+ φi)

where φi = tan−1

(
Im [H(jωi)]

Re [H(jωi)]

)

We can think of this in two ways:

1. the transfer function fully describes the frequency response of the system

2. if we know the frequency response of the system, we can build the transfer function

In frequency-domain system identification, sinusoidal inputs are used to build an empirical transfer
function experimentally. This can be an extremely useful method of obtaining a system model.

The frequency domain can be very useful in thinking about systems with vibrating or oscillations
at specific frequencies. Audio systems and structural vibrations (in a car or bridge, for instance)
are good examples.

We can use these techniques to gain insight into systems we have already studied.

2 Example: RC circuit revisited

+

-
vi

R

C

+

-
vo

V0(s)

Vi(s)
=

1

RCs+ 1
= H(s)
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Magnitude: |H(jω)| = 1√
R2C2ω2 + 1

DC gain (ω = 0): H(0) = 1

|H(jω)| → 0 as ω →∞ (low pass filter)

|H(jωc)| for ωc =
1

RC
: |H(jωc)| =

1√
2

=

√
2

2

Phase: H(jω) =
1

RCjω + 1
=

1− jωRC
1 + ω2R2C2

=
1

1 + ω2R2C2
− j ωRC

1 + ω2R2C2

∠H(0) = 0◦

As ω →∞,∠H(jω)→ −90◦ Get this from tan−1(−jωRC)

∠H(jωc) = ∠

(
1

2
− j

2

)
= −45◦

So our system response looks like:
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3 Example: PD control and lead compensation compared

Lead compensator: D(s) = K
Ts+ 1

αTs+ 1

0<α<1

K>0

|D(jω)| = |K| |Tjω + 1|
|αTjω + 1| = |K|

√
1 + (ωT )2√

1 + (αωT )2

|D(jω)| ≈ K at low frequencies

|D(jω)| = K

√
1
ω2 + T 2

√
1
ω2 + α2T 2

≈ K

α
at high frequencies

φ = ∠ (1 + jωT )− ∠ (1 + αjωT )

= tan−1 (ωT )− tan−1 (αωT )

φ = 0◦ at low frequencies and high frequencies; in between, φ > 0◦.

PD Control: D(s) = K (Ts+ 1)

D(jω) = K (Tjω + 1) same as lead compensator when α = 0

|D (jω)| = K at low frequencies

|D (jω)| → ∞ as ω →∞

φ = ∠ (1 + jωT ) = 0◦ at ω = 0

φ→ 90◦ as ω →∞
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Graphically:
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This gives a clearer explanation of lead compensation as a combination of PD control and a low-
pass filter. This is literally true. The lead compensator does not amplify high-frequency signals as
much as the PD controller. By changing the value of α, we can make the lead compensator match
the response (and behavior) of the PD controller over a certain frequency range.

Our intuition is that signals beyond the frequency range of interest represent “noise” that we do
not want to amplify.
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