ENGR 105: Feedback Control Design
Winter 2013

Lecture 18 - Frequency Response Basics
Monday, February 25, 2013

Today’s Objectives

1. review the derivation of the the frequency response of a transfer function
2. revisit RC circuit example from a frequency response perspective
3. example comparing PD control and lead compensation

Reading: FPE Section 6.1

1 Review of Frequency Response

Thinking back to the concept of Fourier Transforms, a physical signal can be decomposed into a
series of sinusoids at different frequencies. If we can describe what happens to each one of these
sinusoids as it goes through a linear system, we can fully describe what happens to the signal.
Thus, we can think of describing a linear system by its frequency response.

When we discussed transfer functions, we derived the sinusoidal response of a linear system:
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Once the response from the stable poles dies out,
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This can be rearranged into a more insightful form:
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Remember, H(jw) is just a complex number. It has real and imaginary components, which can
also be described by a magnitude and phase:
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So a sine wave passed into a linear system produces a sine wave of the same frequency but different
magnitude and phase (once transients have died out). The transfer function describes the change
in the magnitude and phase.
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If I have a more complicated input that I can write as a sum of sinusoids, the output is a simple
sum of sinusoids:
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where ¢; = tan™" (Im[gﬂ)

We can think of this in two ways:
1. the transfer function fully describes the frequency response of the system
2. if we know the frequency response of the system, we can build the transfer function
In frequency-domain system identification, sinusoidal inputs are used to build an empirical transfer

function experimentally. This can be an extremely useful method of obtaining a system model.

The frequency domain can be very useful in thinking about systems with vibrating or oscillations
at specific frequencies. Audio systems and structural vibrations (in a car or bridge, for instance)
are good examples.

We can use these techniques to gain insight into systems we have already studied.

2 Example: RC circuit revisited
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So our system response looks like:
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3 Example: PD control and lead compensation compared

Lead compensator: p(s) = Ts+1 0<a<l
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PD Control: D(s) =K (T's+1)
D(jw) = K (Tjw+1) same as lead compensator when a =0
|D (jw)| = K at low frequencies
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Graphically:
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This gives a clearer explanation of lead compensation as a combination of PD control and a low-
pass filter. This is literally true. The lead compensator does not amplify high-frequency signals as
much as the PD controller. By changing the value of o, we can make the lead compensator match
the response (and behavior) of the PD controller over a certain frequency range.

Our intuition is that signals beyond the frequency range of interest represent “noise” that we do

not want to amplify.



