
ENGR 105: Feedback Control Design
Winter 2013

Lecture 21 - Nyquist Stability
Monday, March 4, 2013

Today’s Objectives

1. review the neutral stability criterion
2. explain Cauchys Argument Principle
3. show how this applies to stability
4. simple example of sketching the Nyquist plot and checking for stability

Reading: FPE Sections 6.2, 6.3

1 Neutral Stability

The concept of neutral stability discussed in the last lecture is useful in examining the range of
stability for systems with no right half plane zeros or poles. It shows that there is a particular
significance to points defined by:

|KG(j!)| = 1 at \KG(j!) = \G(j!) = 180

�

We know that these are conditions such that s = j! lies on the root locus. In other words, this
occurs when the system has a pole on the imaginary axis. However, this stability criterion only
holds for a subset of systems: those for which increasing gain leads to instability, and |KG(j!)|
crosses the magnitude 1 once.

For more complex systems, it isn’t immediately clear whether the point of neutral stability rep-
resents the system transitioning from stable to unstable as the gain is increased or the other way
around. It also is not clear how to handle multiple crossings of the imaginary axis.

Harry Nyquist of Bell Laboratories (yes, another Bell Labs person!) worked this out in 1932 using
Cauchy’s Argument Principle.

2 Argument Principle

Remember that if we want to evaluate a transfer function H(s) anywhere in the complex plane, we
can look at the angles and distances to the poles and zeros.

Some material in this document

c�2010 Pearson (from the textbook Feedback Control of Dynamic Systems, 6th Ed.)
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Consider a test point s0.

xx

s0

Re

Im We can evaluate our transfer function H(s)

at this test point in terms of its magnitude

and phase:

|H(s0)| =
r1 · r2 · . . .
l1 · l2 · . . .

\H(s0) =
X

 i �
X

�i

We can write

H(s0) = |H(s0)|ej\H(s0)

.

Now suppose we want to evaluate H(s) around a clockwise contour (or loop) C1 in the s-plane.

xx

C1

Re

Im

)

H(s) on C1

Im[H(s)]

Re[H(s)]

This can be done point by point for each test point on the contour C1. The plot on the right is
known in controls as a Nyquist plot. You can think of it as the real and imaginary components
of H(s) (corresponding the vertical and horizontal axes), or as a polar plot of angles \H(s) and
magnitudes |H(s)|, evaluated as s moves around a clockwise contour.
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A interesting observation in this example is that H(s) evaluated on C1 never encircles the origin.
This is because none of the poles or zeros of H(s) are contained in C1. If they were, we would get
a di↵erent picture:

xx

C1

Re

Im

)

H(s) on C1

Re

Im

This is because the points on the contour now make a complete 360� rotation with respect to any
point outside the contour. Consider

\H(s0) =  1 +  2 � �1 � �2.

As we travel around the contour C1, the angles  1,  2, and �1 (corresponding to the two zeros and
the pole outside the contour) will not undergo a net change. But the angle between the test points
around the contour and the pole inside the contour will undergo a net change of -360� after one
full traverse of C1. This causes H(s) evaluated on C1 to encircle the origin in the counterclockwise
direction.

Cauchy’s argument principle states that:

The polar plot of H(s) will circle the origin Z � P times,

where Z is the number of zeros inside the contour

and P is the number of poles inside the contour.

These are clockwise encirclements, so a counterclockwise encirclement is the same as -1 clockwise
encirclements. The negative sign on P comes from the \H(s0) equation above, which in turn came
from the fact that the poles were in the denominator of the transfer function.

3



3 Stability

How can we use the Argument Principle to say something about system stability?

For stability, we want to evaluate if we have any closed-loop poles in the right half plane (for some
value of K). Therefore we want to evaluate our closed-loop characteristic equation

1 +KG(s)

using a clockwise contour corresponding to the entire right half plane. (If we have poles or zeros
that lie on the imaginary axis, we will take a small detour around them, as will be shown later in
an example.)

xx

c

a

e

d

b

Before formulating the formal stability criterion, we make two more observations:

(1) The zeros of 1 +KG(s) are the closed-loop poles

The poles of 1 +KG(s) are the open-loop poles

This follows from: 1 +KG(s) = 0

1 +K
b(s)

a(s)
= 0

a(s) +Kb(s)

a(s)
= 0

a(s) +Kb(s) = 0
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(2) 1 +KG(s) is just KG(s) shifted to the right (along the real axis) by 1.

Thus, plotting 1 + KG(s) and looking at encirclements of the origin is the same as plot-
ting KG(s) and looking at encirclements of �1.

Putting this together gives the Nyquist Stability Criterion:

(1) Evaluate KG(s) on the contour enclosing the right half plane

(2) Count the number of clockwise encirclements of �1 (call this N)

(3) Count the number of unstable open loop poles (call this P )

(4) The number of unstable closed-loop poles is N + P

In other words, if the plot of KG(s) encircles �1, then 1+KG(s) must encircle 0 (the origin). This
means that there must be zeros or poles of 1 +KG(s) (open- or closed-loop poles of our system)
in the right half plane.

This may seem a bit abstract, but it pretty simple if you are systematic and work from the Bode
plot of the system.

4 A Simple Example

Consider the closed-loop characteristic equation 1 +KG(s) = 0 where

KG(s) =
K!n

2

s2 + 2⇣!ns+ !n
2

Let’s go through the steps to determine Nyquist stability for this system.

(1) Evaluate KG(s) on the contour enclosing the right half plane:

The Bode plots give us this information! The Bode plots tell us the magnitude and phase of KG(s)
as s = j! goes from s = 0 to s = j1. Because G(j!) is the complex conjugate of G(�j!), we can
get the s = �j1 ! 0 portion by reflecting about the real axis.

This takes us from the top of the imaginary axis to the bottom of the imaginary axis (s = j!
going from +j1 to �j1). But what about the encircling of the right half plane? Any KG(s)
that represents a physical system will have zero response at infinite frequency (i.e., has more poles
than zeros). Thus, the big arc of the contour about the right half plane (which corresponds to s
at infinity, now with both real and imaginary parts) results in KG(s) being a point of infinitely
small value near the origin for that part of the contour. So practically speaking, we can get all the
information we need from just the Bode plots.
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MATLAB code used to generate these plots:

K = 1;

zeta = .5;

wn = 1;

sys = tf([K*wn

^

2],[1 2*zeta*wn wn

^

2]);

figure(’units’,’normalized’,’position’,[0,0,.75,.5])

subplot(1,2,1)

bode(sys)

subplot(1,2,2)

nyquist(sys)

(2) Count the number of clockwise encirclements of �1 (call this N):

There are no encirclements of �1, so N = 0.

(3) Count the number of unstable open loop poles (call this P ):

There are no unstable open-loop poles, so P = 0.

(4) The number of unstable closed-loop poles is N + P :

N + P = 0, so this system is stable.

This is true for the value K = 1 we used in our MATLAB code. But would it be true for any K?
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