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Winter 2013

Lecture 25 - Time Delay
Friday, March 15, 2013

Today’s Objectives

1. give an example system with time delay
2. describe how to model time delay
3. examine system behavior with time delay

Reading: FPE Section 5.6.3

Time Delay

Time delay is a factor in many control systems. Root locus and Bode/Nyquist techniques provide
a useful tool for analyzing the e↵ect of delay.

1 Example system: Steer-by-wire cars

Stanford’s student-built steer-by-wire cars (from Prof. Chris Gerdes’ lab) run the steering control
loop at 500 Hz (sampling 500 times a second) and use a 5000 counts-per-revolution encoder with a
gear reduction of 160:1.

Encoder with 5000 counts/revolution

Harmonic Drive with 160:1 reduction

Motor
Output link-used to steer wheels
(measured at 0.00045 degree increments)

With this sampling rate and sensor resolution, we can easily use the continuous system techniques
of this class to analyze the system. Furthermore, we can approximately obtain a PD controller by
di↵erencing the position output.

If we assume that the motor dynamics are much faster than those of the wheel itself, we can model
the control input as our motor torque.

Some material in this document

c�2010 Pearson (from the textbook Feedback Control of Dynamic Systems, 6th Ed.)
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A schematic of the system is shown below. (This is a top view, looking down at a wheel that is
steered to an angle of �.

⌧ = J(�)¨� + b(�) ˙�

By paying attention to the linkage design (close to a parallelogram), we have made J(�) and b(�)
roughly constant, so a reasonable model is:

⌧ = J¨� + b ˙�

The block diagram of the system is:

KP + KDsR(s) E(s) U(s) 6(s)
+

-
1

Js2+bs

�(s)

T (s)
=

1

Js2 + bs

With fast sampling, high sensor resolution and enough torque, this becomes a very simple con-
trol problem. This was intentional since the students thought about “design for controllability”
throughout the process. They applied similar ideas in developing the controller for the steering
control on an Audi TT-S. This had to work with the steering system and electric power steering
already in the car, so they could not use mechanical design to make life easier.

In modern cars, control systems are networked using an interface such as CAN (controller area
network) or FlexRay. Waiting for CAN messages can add delay to the system. While this sort of
problem is often addressed best using the principles of digital control (where we model sampling
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times explicitly and think of di↵erences instead of derivatives), our E105 techniques show the
fundamental limits well.

2 Modeling time delay

The CAN network introduces delay between the steering angle and our measurement and between
our torque command and the torque sent form the motor:

KP + KDsR(s) Y(s)
+

-
1

Js2+bs
Network

Delay

Network
Delay

How do we model the e↵ect of this delay? If we have f(t) coming into a delay of time Td, we have
f(t� Td) coming out:

f(t-Td)Delayf(t)

L{f (t� Td)} =

Z 1

0

f (t� Td) e
�st

dt

=

Z 1

0

f (t� Td) e
�s(t�Td)e�sTd

dt

= e�sTd

Z 1

0

f (t� Td) e
�s(t�Td)

dt

= esTd L{f(t)} if f(t) = 0 for t < 0

So a pure time delay is equivalent to multiplication by e�Tds in the Laplace domain. Since we find
it easier to work with polynomials, this can be approximated as a ratio of polynomials.
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The Padé approximation can be carried out at di↵erent levels of precision:

(1, 1) approximation: e�Tds ⇡
1�

�
Tds
2

�

1 +

�
Tds
2

�

(2, 2) approximation: e�Tds ⇡
1� Tds

2 +

(Tds)2

12

1 +

Tds
2 +

(Tds)2

12

These approximate the delay as adding left half plane poles and right half plane zeros:

x

(1,1)

x

x
(2,2)

As Td ! 0, the poles and zeros move further from the origin.

For the (2, 2) approximation:

zeros @ s =

Td
2 ±

q
Td

2

4 � Td
2

3

2Td
2

12

=

12Td

4Td
2 ± 6

Td
2

r
3Td

2 � 4Td
2

12

=

3

Td
±

p
3

Td
j
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3 System behavior with time delay

We can combine delays to make this analysis easier. If each network delay block has Td
2 , the closed

loop system looks like

Y (s)

R(s)
=

G(s)D(s)Q(s)

1 +G(s)D(s)Q2
(s)

Q(s) = e
�Td
2 s

This is a delay of

Td

2

The characteristic equation is thus:

1 +G(s)D(s)Q2
(s) = 0

1 +

Kp +Kds

Js2 + bs
· e�Tds

= 0

1 +

Kd

J

⇣
s+ Kp

JKd

⌘

s(s+ b
J )

·
1� Tds

2 +

(Tds)2

12

1 +

Tds
2 +

(Tds)2

12

= 0

The e↵ect of the delay depends upon its magnitude. As Td ! 0, the e↵ect becomes negligible. As
Td increases, it can eventually dominate the response.

In any case, the RHP zeros spell trouble as the gain increases. Hence, delay is a performance limit.
The following root loci show the system behavior with no delay and delay of Td = 1 second.
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In addition, we can consider the Bode plots of this system with and without time delay:

ï��

ï��

�

��

��

��
M

ag
ni

tu
de

 (d
B)

��ï� ��ï� ��� ��1 ���
ï���

ï���

ï��

Ph
as

e 
(d

eg
)

No Delay

Frequency  (rad/s)

ï��

ï��

ï��

�

��

��

��

M
ag

ni
tu

de
 (d

B)

��ï� ��ï� ��� ��1 ��� ��3
ï��

�

��

���

���

Ph
as

e 
(d

eg
)

Td = 1

Frequency  (rad/s)

6



Finally, let’s take a loot at the Nyquist plots of this system with and without time delay:
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Matlab code:
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