Problem 1

part a

This loop transfer function is

Bode Diagram Nyquist Diagram
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The Nyquist plot does not approach —1 for any positive K.

part b
This loop transfer function is

1

L(s) = (1/10) (s/10 + 1)(s + 1)2

The plots are shown below



Bode Diagram Nyquist Diagram

0 0.04
50 0.03
@
=3
3
2 ~100 0.02-
=
5
g
=
-150 @ 0.01
2
2
>
g
-200 5 or
0 E
45 — -0.01f
5 -90[ y
3
= -0.02
o -1351- 4
g
£
Q -1801 4
-0.03f
-225- 4
o7k . . . n 0.08 . . . . . .
107 107" 10° 10" 10° 10° 0.04 0.03 0.02 0.01 0 0.01 0.02 0.03 0.04
Frequency (rad/sec) Real Axis
Root Locus
25
201 y
15+ 4
10+ 4
2 <L 4
3 5
>
g
£ 0 1
g
E
sl 1
-101 4
15 1
-20 4
25 . . . . . . | .
-35 -30 -25 -20 -15 -10 -5 0 5 10
Real Axis

There are no open loop RHP poles, so we want no encirclements of —1. When the phase is
—180°, the magnitude is about 0.0017, so the gain would have to be around K = 1/0.0017 ~
576 for any encirclements of —1.



part c

Bode Diagram

Nyquist Diagram
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The Nyquist plot does not approach —1 for any positive K.

clc
clear
s=tf(’s’);

A% part a

G=(s+2)/(s+20);

bode (G) ;

print -dpdf ~/Dropbox/E105
nyquist (G);

print -dpdf ~/Dropbox/E105
rlocus (G);

print -dpdf ~“/Dropbox/E105

A% part b
G=1/((s+10)*(s+2)"2);

bode (G) ;

print -dpdf ~“/Dropbox/E105
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nyquist (G);

axis([-.04,.04,-.04,.04])

print -dpdf “/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/plbi
rlocus (G);

print -dpdf ~/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/plbv

Problem 2

Bode Diagram Nyquist Diagram
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We want to analyze the stability of the CL system

1
T(S) _ K52+25+2
1+ Kot

5242542 s+1

So the first task is to get this into an amenable form. We can easily analyze the stability

of
1 1
T(S) K32+25+2 s+1

= 1 1
L+ K52+2s+2 s+1

Note that stability analysis for T(s) is exactly equivalent to that of T'(s) (to see this, note

that if T'(s) is stable, then T'(s) = FIIT(S) is stable, because SJ%I does not introduce any

new RHP poles, and if T(s) is stable, then T'(s) = (s + 1)T(s) is stable, because the s + 1
term does not add any new RHP poles to f(s)) You are not expected to go into this level
of detail.

There are no open-loop poles, so we want no encirclements of —1. The Bode plot crosses
180° at around 2 rad/sec, and the amplitude is 1/10, so if we “blow up” the Nyquist plot
by adding a gain K > 10, then we get an extra encirclement (two, actually), and therefore
instability. If we add a negative gain, the Nyquist plot rotates by 180° (note: make sure you
can justify this!). Therefore, we are interested in when the of L(s) is 0°. On the Nyquist
contour I', this happens for s = 0, G(s) = .5. So we would have to add a gain of —2 to
get the extra encirclement, so the system is stable for K € (—2,10). We can confirm this
using Nyquist plots of KG(s):
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clc
clear
s=tf(’s’);

G=1/((s"2+2%s+2)*(s+1));

nyquist (G)

print -dpdf ~/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/p2_n
bode (G)

print -dpdf ~“/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/p2_t

nyquist (10*G)
print -dpdf “/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/p2_1
nyquist (-2%*G)
print -dpdf “/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/p2_2

Problem 3

part a

The Bode plots for G; and G, respectively, are
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part b
The Nyquist plots for G; and G, respectively, are
Nyquist Diagram Nyquist Diagram
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A RHP zero does not affect the number of encirclements required for stability. In particular,
for these plants, we need 0 encirclements of —1 for stability. (Of course, the Nyquist plots
may be different for these two plants, so this condition may be met for different values of
the gain K.)

part c

The Bode plots for G5 is



Bode Diagram
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part d
The Nyquist plot for Gj is

Nyquist Diagram
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Unlike the first two plants, this plant has a RHP pole, so we require 1 encirclement of —1
for stability. Therefore, the first plant will not be unstable for any K. The second plant
will be unstable for K > 10, and the third plant will be unstable for K > 10.



part e

Root Locus Root Locus
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s=tf(’s’);

A% part a

Gl=(s+1)/(s+10);

G2=(s-1)/(s+10);

subplot (121); bode(G1);

subplot (122); bode(G2);

print -dpdf “/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/p3a.

A% part b

subplot (121); nyquist (G1);

subplot (122); nyquist (G2);

print -dpdf “/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/p3b.

Ak part c
clf



G3=(s+1)/(s-

bode (G3) ;
print -dpdf

A% part d
nyquist (G3);
print -dpdf

Ak part e

rlocus (G1);
print -dpdf
rlocus (G2);
print -dpdf
rlocus (G3);
print -dpdf

Problem 4

part a

10);

“/Dropbox/E1056-Win2013/Assignments/assignment8-nick/soln/p3c.

“/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/p3d.

“/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/p3ei

“/Dropbox/E1056-Win2013/Assignments/assignment8-nick/soln/p3ei
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The Bode plot of the OL system is:

Note that we can use the Bode plot to tell stability; the magnitude crosses 1 only once, and
increasing gain leads to instability (the asymptotics for the root locus will be +60°, 180°).

part b

Looking at the Bode plot, We cross 180° at w = 4.92 rad/s, with magnitude 0.0097, so our
margin is around 104. (Note: For the original problem (before we modified it) there was a
small hump, and for the critical gain, there were actually two frequencies unity magnitude,
so we actually couldn’t use the Bode plot to analyze stability for the critical gain. But
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we would know that if we use a tiny bit larger gain, we could use the rule again to get
instability, and if we use a tiny bit smaller gain, we could use the rule again to get stability.
If you followed reasoning like this for the original problem, you got credit.)

part c

We add gain (“shifting” the magnitude plot up and down) to ensure that the phase plot
is not within 20° of 180° for all crossover frequencies (in this case, the magnitude plot
is monotonic, so there will only be one such crossover frequency). The phase will be at
least —160° for any K € [4.5709,83.1764], approximately. (Note that we could make the
phase lower than 200° for higher gains, but the system would be unstable, so phase margin
wouldn’t make much sense!) If you took the problem as originally stated, you got full credit
if you said something about why you can’t analyze the phase margin when there are two
crossover frequencies without using Nyquist.

Gm =27.1dB (at 4.92 rad/sec) , Pm = 20 deg (at 0.362 rad/sec) Gm =187 dB (at 4.92 radisec) , Pm = 20.3 deg (at 4.2 rad/sec)
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Problem 5

part a

The Bode plot of the OL system is:

10



Bode Diagram
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When the magnitude is about unity, the phase is around —180, so the phase margin is
virtually non existent. We know a lead compensator has phase up to 90° in the center, so
we can put the lead compensator near the crossover frequency to boost the phase margin
up to 90°. So a possible controller is

s+1
D(s) = ————
s/10+ 1
part b
Bode Diagram
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part c

We want to calculate the transfer function from R to Y, which is

Ris) _ D()G(s)
Y(s) 14 D(s)G(s)

The Bode plot of this transfer function shows that the frequency rolls off around w ~ 6,
which means our system can’t follow references “faster” than this frequency.

Bode Diagram
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clc
clear
s=tf(’s’);

A% part a

G=(5)/(s*x(s+1)*(s/5+1));

bode (G)

print -dpdf ~/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/pba.

A% part b

D=(s/1+1)/(s/10+1);

bode (G,D,G*D)

legend (’Plant’,’Controller’,’LoopyTransfer Function’)

print -dpdf ~/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/pbb.

Ak part c
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T=Dx*G/(1+D*G) ;
bode (T)
print -dpdf “/Dropbox/E105-Win2013/Assignments/assignment8-nick/soln/pbc.
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