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A Low-bandwidth Network File System (LBFS)

Purpose: present a network file system that
consumes less bandwidth than most current file

Systems

Intuition: avoid sending data over the network
that Iis already In the file system or the client’s

cache
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Remote access to a file system (Option 2)

1. Copy
2. Modifty remotely
3. Save incrementally
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Remote access to a file system (Option 3)
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1. Copy
2. Modifty remotely
3. Send changes
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Low-bandwidth Network File System (LBFS)

1. Copy

2. Modify remotely
3. Copy chunks that
are not on the server




BFS Design Principles

e Save bandwidth while providing traditional file
systems semantics

¢ Close-to-open consistency

e E-xploit similarities between files
¢ Hash indexing of data chunks

e Unobtrusive installation on an already running file
system
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Dividing files into chunks...

48 bytes

f the fingerprint is equal to a
| predefined value, then a boundary
Hile region is defined (break-point)

*overlapping sliding window
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Dividing files into chunks...

*overlapping sliding window



Dividing files into chunks...

Chunk 1

o Minimum chunk Is 2K
Chunk 2

e Maximum chunk is 64K

Chunk n




Indexing

e On both the client anc
server, LBFS indexes files

e Fach chunk is indexed using
SHA-1 (first 64 bits)

® |[ndexing Is used to save
chunk transfers

sha1(chunk1)

sha1(chunk?2)

sha1(chunkn)

chunk 1

chunk 2
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Pathological cases (chunks size)
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Close-to-open consistency

e Client fetches a new version when the file is
Not In the local cache or the cached version
IS not up to date

e \\When a process close a file, the client writes
the data back to the server




Close-to-open consistency

e Read leases are used to identify if a file is up to

date

¢ \/\rite leases are not used

* Simi

the fi

ar semantic to AFS (the last process closing
le overwrites changes from others)
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Close-to-open consistency (read lease)
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Close-to-open consistency (read lease)

— If the modification
and the inode
__| change times are the
same

get_attributes

attributes, lease




Close-to-open consistency (read lease)
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File reads

Client

File not in cache
Send GETHASH

shal not in database, send normal read
sha? not in database, send normal read
sha3 in database

Put shal in database
Put sha2 in database

File reconstructed. return to user

Server

Break up file into chunks, @offset+count

Return data associated with shal

Return data associated with sha?2
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File writes

Client

User closes file

Pick fd

Break file into chunks

Send SHA-1 hashes to server

Server has shal
Server needs sha2, send data

Server has sha3
Server has everything, commit

File closed. return to user
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Create tmp file, map (client, fd) to file
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sha2 not in database
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Put sha?2 into database
write data into tmp file

No error, copy data from tmp file
into target file
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File writes

Client Server

User closes file

Pick fd
Break file into chunks Ca ke T

S¢
Create tmp file, map (client, fd) to file

Target file must be
assembled using
the chunks

shal in database, write data into tmp file
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Server has everything, commit
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File closed. return to user
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Security

e Every server has a public key

e \Messages (protocol) are compressed, tagged
with an authentication code, and then encrypted

e At mount time, the client and server negotiate a
session key



Implementation

e Server and client run at user-level

e Server accesses files through NFS

e Client and server communicates over TCP

¢ Client implements the file system using XFS



Implementation
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Implementation

NFS client
chunk ___ LBFS _ rcep | LBFS__| _ chunk
index client server index
N N
xfs NES __ |
client Access control | server
N N

Local cache Content
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—valuation - workloads

e MSWord: open a MSWord document
(1.4MByte) about Windows 2000 and edit its
references

® gcc: recompile emacs 20.7 from source,
after modifying a header file

e ed: transform the perl 5.6.0 source tree Into
perl 5.6.1



SBandwidth utilization
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Normalized bandwidth
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Sandwidth utilization (downstream)
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Bandwidth utilization (upstream)
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Bandwidth utilization (upstream)
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Bandwidth utilization (upstream)
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Summary

e LBFS breaks files into chunks based on
contents

e LBFS indexes file chunks by their hash
values

e LBFS saves bandwidth by taking advantage
of commonality between files



Summary

e LBFS can consume over an order of
magnitude less bandwidth than traditional file
systems

e LBFS makes transparent remote file access
a viable and less frustrating alternative




