A Low-bandwidth Network File System - SOSP’01

Athicha Muthitacharoen, Benjie Chen, and David Mazieres

MIT Laboratory for Computer Science and NYU Department of Computer Science

Presented by Mario Linares-Vasquez



A Low-bandwidth Network File System (LBFS)

Purpose: present a network file system that
consumes less bandwidth than most current file

Systems

Intuition: avoid sending data over the network
that Iis already In the file system or the client’s

cache



Remote access to a file system (Option 1)

1. Copy



Remote access to a file system (Option 1)

=

-

— N

1. Copy
2. Modify remotely



Remote access to a file system (Option 1)

=

1. Copy
2. Modifty remotely
3. Copy to server




Remote access to a file system (Option 2)

1. Copy



Remote access to a file system (Option 2)

=

-

— N

1. Copy
2. Modify remotely



Remote access to a file system (Option 2)

1. Copy
2. Modifty remotely
3. Save incrementally




Remote access to a file system (Option 3)

1. Copy



Remote access to a file system (Option 3)

=

-

— N

1. Copy
2. Modify remotely



Remote access to a file system (Option 3)

) |

1. Copy
2. Modifty remotely
3. Send changes



Low-bandwidth Network File System (LBFS)

1. Copy



Low-bandwidth Network File System (LBFS)

=

-

— N

1. Copy
2. Modify remotely



Low-bandwidth Network File System (LBFS)

1. Copy

2. Modify remotely
3. Copy chunks that
are not on the server




BFS Design Principles

e Save bandwidth while providing traditional file
systems semantics

¢ Close-to-open consistency

e E-xploit similarities between files
¢ Hash indexing of data chunks

e Unobtrusive installation on an already running file
system



Dividing files into chunks...

File

chun

A fi

le Is split

KS by us
fingerpri

N

9

1

s

IN data

Rabin

*overlapping sliding window



Dividing files into chunks...

48 bytes

f the fingerprint is equal to a
| predefined value, then a boundary
Hile region is defined (break-point)

*overlapping sliding window



'---1

Dividing files into chunks...

*overlapping sliding window



Dividing files into chunks...

Chunk 1

o Minimum chunk Is 2K
Chunk 2

e Maximum chunk is 64K

Chunk n




Indexing

e On both the client anc
server, LBFS indexes files

e Fach chunk is indexed using
SHA-1 (first 64 bits)

® |[ndexing Is used to save
chunk transfers

sha1(chunk1)

sha1(chunk?2)

sha1(chunkn)

chunk 1

chunk 2




L BFS




Pathological cases (chunks size)

e [he lower the ch

UNkK size, the greater the index

(e.q., every 2K happened to be a breakpoint)

o

C

chu

ne greater the ¢
O:

nunks (e.qg., fi

Nks)

Nunk size, the lower the number

es containing enormous



Close-to-open consistency

e Client fetches a new version when the file is
Not In the local cache or the cached version
IS not up to date

e \\When a process close a file, the client writes
the data back to the server




Close-to-open consistency

e Read leases are used to identify if a file is up to

date

¢ \/\rite leases are not used

* Simi

the fi

ar semantic to AFS (the last process closing
le overwrites changes from others)



Close-to-open consistency (read lease)

-

—_—




Close-to-open consistency (read lease)

-

—

open

file, read lease




Close-to-open consistency (read lease)

-

—

open

file, read lease

> If the lease
open
has not

expired




Close-to-open consistency (read lease)

- If the lease
q_J has expired I

open

read lease

get_attributes

attributes, lease




Close-to-open consistency (read lease)

— If the modification
and the inode
__| change times are the
same

get_attributes

attributes, lease




Close-to-open consistency (read lease)

u If not..... I

— N

open

read lease

get_attributes

attributes, lease

open

file, read lease




File reads

Client

File not in cache
Send GETHASH

shal not in database, send normal read
sha? not in database, send normal read
sha3 in database

Put shal in database
Put sha2 in database

File reconstructed. return to user

Server

Break up file into chunks, @offset+count

Return data associated with shal

Return data associated with sha?2



File reads

Client

File not in cache
Send GETHASH

shal not in database, send normal read
sha? not in database, send normal read
sha3 in database

Put shal in database
Put sha2 in database

File reconstructed. return to user

Server

Break up file into chunks, @offset+count

Return data associated with shal

Return data associated with sha?2



File reads

Client

File not in cache
Send GETHASH

shal not in database, send normal read
sha? not in database, send normal read
sha3 in database

Put shal in database
Put sha2 in database

File reconstructed. return to user

Server

Break up file into chunks, @offset+count

Return data associated with shal

Return data associated with sha?2



File writes

Client

User closes file

Pick fd

Break file into chunks

Send SHA-1 hashes to server

Server has shal
Server needs sha2, send data

Server has sha3
Server has everything, commit

File closed. return to user

Server

Create tmp file, map (client, fd) to file
shal in database, write data into tmp file
sha2 not in database

sha3 in database, write data into tmp file

Put sha?2 into database
write data into tmp file

No error, copy data from tmp file
into target file



File writes

Client

User closes file

Pick fd

Break file into chunks

Send SHA-1 hashes to server

Server has shal
Server needs sha2, send data

Server has sha3
Server has everything, commit

File closed. return to user

Server

Create tmp file, map (client, fd) to file
shal in database, write data into tmp file
sha2 not in database

sha3 in database, write data into tmp file

Put sha?2 into database
write data into tmp file

No error, copy data from tmp file
into target file



File writes

Client Server

User closes file

Pick fd
Break file into chunks Ca ke T

S¢
Create tmp file, map (client, fd) to file

Target file must be
assembled using
the chunks

shal in database, write data into tmp file
sha2 not in database

sha3 in database, write data into tmp file

Server has sha3
Server has everything, commit

Put sha?2 into database
write data into tmp file

No error, copy data from tmp file
into target file

File closed. return to user



File writes

Client

User closes file

Pick fd

Break file into chunks

Send SHA-1 hashes to server

Server has shal
Server needs sha2, send data

Server has sha3
Server has everything, commit

File closed. return to user

Server

Create tmp file, map (client, fd) to file
shal in database, write data into tmp file
sha2 not in database

sha3 in database, write data into tmp file

Put sha?2 into database
write data into tmp file

No error, copy data from tmp file
into target file



File writes

Client

User closes file

Pick fd

Break file into chunks

Send SHA-1 hashes to server

Server has shal
Server needs sha2, send data

Server has sha3
Server has everything, commit

File closed. return to user

Server

Create tmp file, map (client, fd) to file
shal in database, write data into tmp file
sha2 not in database

sha3 in database, write data into tmp file

Put sha?2 into database
write data into tmp file

No error, copy data from tmp file
into target file



File writes

Client

User closes file

Pick fd

Break file into chunks

Send SHA-1 hashes to server

Server has shal
Server needs sha2, send data

Server has sha3
Server has everything, commit

File closed. return to user

Server

Create tmp file, map (client, fd) to file
shal in database, write data into tmp file
sha2 not in database

sha3 in database, write data into tmp file

Put sha?2 into database
write data into tmp file

No error, copy data from tmp file
into target file



Security

e Every server has a public key

e \Messages (protocol) are compressed, tagged
with an authentication code, and then encrypted

e At mount time, the client and server negotiate a
session key



Implementation

e Server and client run at user-level

e Server accesses files through NFS

e Client and server communicates over TCP

¢ Client implements the file system using XFS



Implementation

chunk __ LBFS _ Icrp _ LBFS____ chunk
index client server index

&/

xts NFS
client server

O

Local cache Content



Implementation

chunk __ LBFS _ rcep | LBFS__| _ chunk
index client server index

- '

xts NFS
client server

O

Local cache Content



Implementation

NFS client
chunk ___ LBFS _ rcep | LBFS__| _ chunk
index client server index
N N
xfs NES __ |
client Access control | server
N N

Local cache Content



—valuation

e Bandc

U

tiliza

width consumption and networ

ion of LBFS under several com

workloads

Mon

e Comparison to CIFS, NFS version 3, and
AFS



—valuation - workloads

e MSWord: open a MSWord document
(1.4MByte) about Windows 2000 and edit its
references

® gcc: recompile emacs 20.7 from source,
after modifying a header file

e ed: transform the perl 5.6.0 source tree Into
perl 5.6.1



SBandwidth utilization

Upstream Downstream

(writing) (reading)
CIFS
NFES
I AFS

Leases+Gzip
LBFS, new DB
Bl LBFS

Normalized bandwidth

MSWord



SBandwidth utilization

Normalized bandwidth

Upstream
(writing)

Downstream
(reading)

gcc

CIFS
NFS
[ AFS

Leases+Gzip
LBFS, new DB
Bl LBFS




SBandwidth utilization

Normalized bandwidth

Upstream
(writing)

ed

Downstream
(reading)

CIFS
NFS
[ AFS

Leases+Gzip
LBFS, new DB
Bl LBFS




Sandwidth utilization (downstream)

= ' 7 N\ \‘ @4 CIFS
. g E N =

g 1 ¥ \ :lL eeeee +Gzip
g 057 /, /, N\ \ LBES, new DB
Rl I N S
211 N\

> 1V / N\ N

Caching




Bandwidth utilization (upstream)

Normalized bandwidth

CIFS
NFS

I AFS
[ ] Leases+Gzip

LBFS, new DB
Bl LBFS

MS

Word acc

Writes are deferred to close time




Bandwidth utilization (upstream)

Normalized bandwidth

Word acc

Compression

CIFS
NFS

I AFS
[ ] Leases+Gzip

LBFS, new DB
Bl LBFS




Bandwidth utilization (upstream)

CIFS
NFS

I AFS
[ ] Leases+Gzip

LBFS, new DB
Bl LBFS

Normalized bandwidth

MSWord acc ed

Chunking



Application performance

[A ] CIFS LAN
CIFS
NFS LAN
101 1312 ] 1830
g 1.0 —= NEFS
p= ] AF
= 0.8 - ] 5 ,
S ] Leases+Gzip
S 0.6 LBFS, new DB
w4
) 7 LBFS
T 04— g
N l
=
0.2 - 193 182
g _ 138
Z 00 -

MSWord gcc ed



Application performance

[A ] CIFS LAN
CIFS
NFS LAN
1312 ] 1830

g 1.0 —= NEFS
= ] [ AFS
o 0.8 7
S ] Leases+Gzip
S 0.6 LBFS, new DB
w4
o 7 LBFS
T 04- g
N 1
S 02- 19 193 182
35 -
Z 00 -

MSWord gcc ed



Application performance

[ZA CIFS LAN
CIFS
NFS LAN
101 “ 1830
g 1.0 —= W\ NEFS
5 7 AF
= 0.8 — - > .
S ] Leases+Gzip
§ 0.6 — &4 LBFS, new DB
% 4
(<P}
T 04
N i
S 0.2
[ i
()
Z 00 -

MSWord gcc ed



Application performance

[A ] CIFS LAN
CIFS
NFS LAN
101 1312 ]
g 1.0 — NFES Y
p= ] AF
= 0.8 - ] 5 ,
S ] Leases+Gzip
S 0.6 LBFS, new DB
w4
) 7 LBFS
T 04— g
N l
=
0.2 - 193 182
g _ 138
Z 00 -

MSWord gcc ed



Summary

e LBFS breaks files into chunks based on
contents

e LBFS indexes file chunks by their hash
values

e LBFS saves bandwidth by taking advantage
of commonality between files



Summary

e LBFS can consume over an order of
magnitude less bandwidth than traditional file
systems

e LBFS makes transparent remote file access
a viable and less frustrating alternative




