
A Low-bandwidth Network File System - SOSP’01

Athicha Muthitacharoen, Benjie Chen, and David Mazières

MIT Laboratory for Computer Science and NYU Department of Computer Science

Presented by Mario Linares-Vásquez

A Low-bandwidth Network File System (LBFS)

Purpose: present a network file system that
consumes less bandwidth than most current file
systems

Intuition: avoid sending data over the network
that is already in the file system or the client’s
cache

Remote access to a file system (Option 1)

1. Copy

Remote access to a file system (Option 1)

1. Copy
2. Modify remotely

Remote access to a file system (Option 1)

1. Copy
2. Modify remotely
3. Copy to server

Remote access to a file system (Option 2)

1. Copy

Remote access to a file system (Option 2)

1. Copy
2. Modify remotely

Remote access to a file system (Option 2)

1. Copy
2. Modify remotely
3. Save incrementally

Remote access to a file system (Option 3)

1. Copy

Remote access to a file system (Option 3)

1. Copy
2. Modify remotely

Remote access to a file system (Option 3)

1. Copy
2. Modify remotely
3. Send changes

Low-bandwidth Network File System (LBFS)

1. Copy

Low-bandwidth Network File System (LBFS)

1. Copy
2. Modify remotely

Low-bandwidth Network File System (LBFS)

1. Copy
2. Modify remotely
3. Copy chunks that
are not on the server

LBFS Design Principles

• Save bandwidth while providing traditional file
systems semantics

•Close-to-open consistency

•Exploit similarities between files

• Hash indexing of data chunks

•Unobtrusive installation on an already running file
system

Dividing files into chunks...

File

*overlapping sliding window

 A file is split in data
chunks by using Rabin

fingerprints

48 bytes

Dividing files into chunks...

File

If the fingerprint is equal to a
predefined value, then a boundary

region is defined (break-point)

48 bytes

*overlapping sliding window

Dividing files into chunks...

File

break-point

Chunk

48 bytes

*overlapping sliding window

Dividing files into chunks...

Chunk 1

Chunk 2

........

Chunk n

•Minimum chunk is 2K

•Maximum chunk is 64K

Indexing

chunk 1

chunk 2

.....

chunk n

• On both the client and
server, LBFS indexes files

•Each chunk is indexed using
SHA-1 (first 64 bits)

• Indexing is used to save
chunk transfers

sha1(chunk1)

sha1(chunk2)

sha1(chunkn)

LBFS

Ch 2
Ch 3

Ch 4

Ch 2Ch 3

Ch 1

Pathological cases (chunks size)

• The lower the chunk size, the greater the index
(e.g., every 2K happened to be a breakpoint)

•The greater the chunk size, the lower the number
of chunks (e.g., files containing enormous
chunks)

Close-to-open consistency

• Client fetches a new version when the file is
not in the local cache or the cached version
is not up to date

• When a process close a file, the client writes
the data back to the server

Close-to-open consistency

• Read leases are used to identify if a file is up to
date

•Write leases are not used

•Similar semantic to AFS (the last process closing
the file overwrites changes from others)

Close-to-open consistency (read lease)

Close-to-open consistency (read lease)

open

file, read_lease

Close-to-open consistency (read lease)

open

file, read_lease

If the lease
has not
expired

open

Close-to-open consistency (read lease)

open

read_lease

If the lease
has expired

get_attributes

attributes, lease

Close-to-open consistency (read lease)

open

read_lease

get_attributes

attributes, lease

open

If the modification
and the inode

change times are the
same

Close-to-open consistency (read lease)

open

read_lease

get_attributes

attributes, lease

If not.....

open

file, read_lease

File reads

GETHASH(fh, offset, count)

Server
 File not in cache

Client

sha1 not in database, send normal read
sha2 not in database, send normal read

sha3 in database

Put sha1 in database
Put sha2 in database

Break up file into chunks, @offset+count

Return data associated with sha1

Return data associated with sha2
Data of sha1

Data of sha2

READ(fh, sha1_off, size1)

READ(fh, sha2_off, size2)

eof = true

(sha1,size1)

(sha3,size3)(sha2,size2)

File reconstructed, return to user

Send GETHASH

Figure 2: Reading a file using LBFS

Because LBFS only provides close-to-open consistency, a
modified file does not need to be written back to the server
until it is closed. Thus, LBFS does not need write leases on
files—the server never demands back a dirty file. Moreover,
when files are written back, they are committed atomically.
Thus, if a client crashes or is cut from the network while
writing a file, the file will not get corrupted or locked—other
clients will simply continue to see the old version. When
multiple processes on the same client have the same file open
for writing, LBFS writes data back whenever any of the pro-
cess closes the file. If multiple clients are writing the same
file, then the last one to close the file will win and over-
write changes from the others. These semantics are similar
to those of AFS.

3.2.2 File Reads

File reads in LBFS make use of one RPC procedure not in
the NFS protocol, GETHASH.
GETHASH retrieves the hashes of data chunks in a file,

so as to identify any chunks that already exist in the client’s
cache. GETHASH takes the same arguments as a READ
RPC, namely a file handle, offset, and size (though in
practice the size is always the maximum possible, because
the client practices whole file operations). Instead of re-
turning file data, however, GETHASH returns a vector of
〈SHA-1 hash, size〉 pairs.

Figure 2 shows the use of GETHASH. When download-
ing a file not in its cache, the client first calls GETHASH to
obtain hashes of the file’s chunks. Then, for any chunks not
already in its cache, the client issues regular READ RPCs.
Because the READ RPCs are pipelined, downloading a file
generally only incurs two network-round trip times plus the
cost of downloading any data not in the cache. For files larger

than 1,024 chunks, the client must issue multiple GETHASH
calls and may incur multiple round trips. However, network
latency can be overlapped with transmission and disk I/O.

3.2.3 File Writes

File writes proceed somewhat differently in LBFS from
NFS. While NFS updates files at the server incrementally
with each write, LBFS updates them atomically at close
time. There are several reasons for using atomic updates.
Most importantly, the previous version of a file often has
many chunks in common with the current version. Keeping
the old version around helps LBFS exploit the commonal-
ity. Second, LBFS’s file reconstruction protocol can signif-
icantly alter the order of writes to a file. Files being written
back may have confusing intermediary states (for instance
an ASCII file might temporarily contain blocks of 0s). Fi-
nally, atomic updates limit the potential damage of simulta-
neous writes from different clients. Since two clients writing
the same file do not see each other’s updates, simultaneously
changing the same file is a bad idea. When this does occur,
however, atomic updates at least ensure that the resulting file
contains the coherent contents written by one of the clients,
rather than a mishmash of both versions.

LBFS uses temporary files to implement atomic updates.
The server first creates a unique temporary file, writes the
temporary file, and only then atomically commits the con-
tents to the real file being updated. While writing the tempo-
rary file, LBFS uses chunks of existing files to save band-
width where possible. Four RPCs implement this update
protocol: MKTMPFILE, TMPWRITE, CONDWRITE, and
COMMITTMP.
MKTMPFILE creates a temporary file for later use in an

atomic update. MKTMPFILE takes two arguments: first,

File reads

GETHASH(fh, offset, count)

Server
 File not in cache

Client

sha1 not in database, send normal read
sha2 not in database, send normal read

sha3 in database

Put sha1 in database
Put sha2 in database

Break up file into chunks, @offset+count

Return data associated with sha1

Return data associated with sha2
Data of sha1

Data of sha2

READ(fh, sha1_off, size1)

READ(fh, sha2_off, size2)

eof = true

(sha1,size1)

(sha3,size3)(sha2,size2)

File reconstructed, return to user

Send GETHASH

Figure 2: Reading a file using LBFS

Because LBFS only provides close-to-open consistency, a
modified file does not need to be written back to the server
until it is closed. Thus, LBFS does not need write leases on
files—the server never demands back a dirty file. Moreover,
when files are written back, they are committed atomically.
Thus, if a client crashes or is cut from the network while
writing a file, the file will not get corrupted or locked—other
clients will simply continue to see the old version. When
multiple processes on the same client have the same file open
for writing, LBFS writes data back whenever any of the pro-
cess closes the file. If multiple clients are writing the same
file, then the last one to close the file will win and over-
write changes from the others. These semantics are similar
to those of AFS.

3.2.2 File Reads

File reads in LBFS make use of one RPC procedure not in
the NFS protocol, GETHASH.
GETHASH retrieves the hashes of data chunks in a file,

so as to identify any chunks that already exist in the client’s
cache. GETHASH takes the same arguments as a READ
RPC, namely a file handle, offset, and size (though in
practice the size is always the maximum possible, because
the client practices whole file operations). Instead of re-
turning file data, however, GETHASH returns a vector of
〈SHA-1 hash, size〉 pairs.

Figure 2 shows the use of GETHASH. When download-
ing a file not in its cache, the client first calls GETHASH to
obtain hashes of the file’s chunks. Then, for any chunks not
already in its cache, the client issues regular READ RPCs.
Because the READ RPCs are pipelined, downloading a file
generally only incurs two network-round trip times plus the
cost of downloading any data not in the cache. For files larger

than 1,024 chunks, the client must issue multiple GETHASH
calls and may incur multiple round trips. However, network
latency can be overlapped with transmission and disk I/O.

3.2.3 File Writes

File writes proceed somewhat differently in LBFS from
NFS. While NFS updates files at the server incrementally
with each write, LBFS updates them atomically at close
time. There are several reasons for using atomic updates.
Most importantly, the previous version of a file often has
many chunks in common with the current version. Keeping
the old version around helps LBFS exploit the commonal-
ity. Second, LBFS’s file reconstruction protocol can signif-
icantly alter the order of writes to a file. Files being written
back may have confusing intermediary states (for instance
an ASCII file might temporarily contain blocks of 0s). Fi-
nally, atomic updates limit the potential damage of simulta-
neous writes from different clients. Since two clients writing
the same file do not see each other’s updates, simultaneously
changing the same file is a bad idea. When this does occur,
however, atomic updates at least ensure that the resulting file
contains the coherent contents written by one of the clients,
rather than a mishmash of both versions.

LBFS uses temporary files to implement atomic updates.
The server first creates a unique temporary file, writes the
temporary file, and only then atomically commits the con-
tents to the real file being updated. While writing the tempo-
rary file, LBFS uses chunks of existing files to save band-
width where possible. Four RPCs implement this update
protocol: MKTMPFILE, TMPWRITE, CONDWRITE, and
COMMITTMP.
MKTMPFILE creates a temporary file for later use in an

atomic update. MKTMPFILE takes two arguments: first,

File reads

GETHASH(fh, offset, count)

Server
 File not in cache

Client

sha1 not in database, send normal read
sha2 not in database, send normal read

sha3 in database

Put sha1 in database
Put sha2 in database

Break up file into chunks, @offset+count

Return data associated with sha1

Return data associated with sha2
Data of sha1

Data of sha2

READ(fh, sha1_off, size1)

READ(fh, sha2_off, size2)

eof = true

(sha1,size1)

(sha3,size3)(sha2,size2)

File reconstructed, return to user

Send GETHASH

Figure 2: Reading a file using LBFS

Because LBFS only provides close-to-open consistency, a
modified file does not need to be written back to the server
until it is closed. Thus, LBFS does not need write leases on
files—the server never demands back a dirty file. Moreover,
when files are written back, they are committed atomically.
Thus, if a client crashes or is cut from the network while
writing a file, the file will not get corrupted or locked—other
clients will simply continue to see the old version. When
multiple processes on the same client have the same file open
for writing, LBFS writes data back whenever any of the pro-
cess closes the file. If multiple clients are writing the same
file, then the last one to close the file will win and over-
write changes from the others. These semantics are similar
to those of AFS.

3.2.2 File Reads

File reads in LBFS make use of one RPC procedure not in
the NFS protocol, GETHASH.
GETHASH retrieves the hashes of data chunks in a file,

so as to identify any chunks that already exist in the client’s
cache. GETHASH takes the same arguments as a READ
RPC, namely a file handle, offset, and size (though in
practice the size is always the maximum possible, because
the client practices whole file operations). Instead of re-
turning file data, however, GETHASH returns a vector of
〈SHA-1 hash, size〉 pairs.

Figure 2 shows the use of GETHASH. When download-
ing a file not in its cache, the client first calls GETHASH to
obtain hashes of the file’s chunks. Then, for any chunks not
already in its cache, the client issues regular READ RPCs.
Because the READ RPCs are pipelined, downloading a file
generally only incurs two network-round trip times plus the
cost of downloading any data not in the cache. For files larger

than 1,024 chunks, the client must issue multiple GETHASH
calls and may incur multiple round trips. However, network
latency can be overlapped with transmission and disk I/O.

3.2.3 File Writes

File writes proceed somewhat differently in LBFS from
NFS. While NFS updates files at the server incrementally
with each write, LBFS updates them atomically at close
time. There are several reasons for using atomic updates.
Most importantly, the previous version of a file often has
many chunks in common with the current version. Keeping
the old version around helps LBFS exploit the commonal-
ity. Second, LBFS’s file reconstruction protocol can signif-
icantly alter the order of writes to a file. Files being written
back may have confusing intermediary states (for instance
an ASCII file might temporarily contain blocks of 0s). Fi-
nally, atomic updates limit the potential damage of simulta-
neous writes from different clients. Since two clients writing
the same file do not see each other’s updates, simultaneously
changing the same file is a bad idea. When this does occur,
however, atomic updates at least ensure that the resulting file
contains the coherent contents written by one of the clients,
rather than a mishmash of both versions.

LBFS uses temporary files to implement atomic updates.
The server first creates a unique temporary file, writes the
temporary file, and only then atomically commits the con-
tents to the real file being updated. While writing the tempo-
rary file, LBFS uses chunks of existing files to save band-
width where possible. Four RPCs implement this update
protocol: MKTMPFILE, TMPWRITE, CONDWRITE, and
COMMITTMP.
MKTMPFILE creates a temporary file for later use in an

atomic update. MKTMPFILE takes two arguments: first,

File writes

HASHNOTFOUNDOK

OK

OK

OK

OK

Server

MKTMPFILE(fd,fhandle)

TMPWRITE(fd,offset2,count2,data)

CONDWRITE(fd,offset1,count1,sha1)

CONDWRITE(fd,offset2,count2,sha2)

CONDWRITE(fd,offset3,count3,sha3)

Client

User closes file

Put sha2 into database

No error, copy data from tmp file

Pick fd

Server needs sha2, send data

File closed, return to user

sha1 in database, write data into tmp file

sha2 not in database

sha3 in database, write data into tmp file

Create tmp file, map (client, fd) to file

Server has sha3
Server has everything, commit

Break file into chunks

Send SHA−1 hashes to server

write data into tmp file

into target file

COMMITTMP(fd,target_fhandle)

Server has sha1

Figure 3: Writing a file using LBFS

the file handle of the file that will eventually be atomically
updated, and second, a client-chosen “file descriptor” for the
temporary file. After receiving the call, the server creates a
temporary file in the same file system as the specified handle
and keeps a mapping from the per-client file descriptor to the
temporary file. Because clients choose the descriptors for
temporary files, they can pipeline operations on temporary
files before the MKTMPFILE RPC returns.
TMPWRITE is similar to a WRITE RPC. The only dif-

ference is the that a client-chosen temporary file descriptor
replaces the NFS file handle in the arguments. An LBFS
client sends TMPWRITEs instead of WRITEs to update a
file created with MKTMPFILE.
CONDWRITE is similar to a TMPWRITE RPC. The ar-

guments contain a file descriptor, offset, and length. Instead
of the actual data to write, however, CONDWRITE argu-
ments contain a SHA-1 hash of the data. If the server can
find the data specified by the hash somewhere in its file sys-
tem, it writes the data to the temporary file at the specified
offset. If it cannot find the data, but the request would other-
wise have completed, CONDWRITE returns the special er-
ror code HASHNOTFOUND.
COMMITTMP commits the contents of a temporary file

to a permanent file if no error has occurred. It takes two argu-
ments, a file descriptor for the temporary file, and a file han-
dle for the permanent file. For each temporary file descrip-
tor, the server keeps track of any errors other than HASH-
NOTFOUND that have occured during CONDWRITE and
TMPWRITE RPCs. If any error has occurred on the file de-
scriptor (e.g., disk full), COMMITTMP fails. Otherwise, the
server replaces the contents of the target file with that of the

temporary file and updates the chunk database to reflect the
file’s new contents. Since LBFS uses TCP, RPCs are deliv-
ered in order. Thus, the client can pipeline a COMMITTMP
operation behind TMPWRITE RPCs.
Figure 3 shows the file write protocol in action. When

a user closes a file that the client must write back, the
client picks a file descriptor and issues a MKTMPFILE RPC
with the handle of the closed file. In response, the server
creates a temporary file handle and maps it to the speci-
fied file descriptor. The client then makes CONDWRITE
RPCs for all data chunks in the file it is writing back.
For any CONDWRITEs returning HASHNOTFOUND, the
client also issues TMPWRITE calls. Finally, the client issues
a COMMITTMP.
Pipelining of writes occurs in two stages. First, the client

pipelines a series of CONDWRITE requests behind a MK-
TMPFILE RPC. Second, as the CONDWRITE replies come
back, the client turns around and issues TMPWRITE RPCs
for any HASHNOTFOUND responses. It pipelines the
COMMITTMP immediately behind the last TMPWRITE.
The communication overhead is therefore generally two
round trip latencies, plus the transmission times of the RPCs.
For large files, the client has a maximum limit on the num-
ber of outstanding CONDWRITE and TMPWRITE calls so
as not to spend too much time sending calls when it can pro-
cess replies. However, the extra network round trips will
generally overlap with the transmission time of RPC calls.

3.2.4 Security Considerations
Because LBFS performs well over a wider range of net-
works than most file systems, the protocol must resist a

File writes

HASHNOTFOUNDOK

OK

OK

OK

OK

Server

MKTMPFILE(fd,fhandle)

TMPWRITE(fd,offset2,count2,data)

CONDWRITE(fd,offset1,count1,sha1)

CONDWRITE(fd,offset2,count2,sha2)

CONDWRITE(fd,offset3,count3,sha3)

Client

User closes file

Put sha2 into database

No error, copy data from tmp file

Pick fd

Server needs sha2, send data

File closed, return to user

sha1 in database, write data into tmp file

sha2 not in database

sha3 in database, write data into tmp file

Create tmp file, map (client, fd) to file

Server has sha3
Server has everything, commit

Break file into chunks

Send SHA−1 hashes to server

write data into tmp file

into target file

COMMITTMP(fd,target_fhandle)

Server has sha1

Figure 3: Writing a file using LBFS

the file handle of the file that will eventually be atomically
updated, and second, a client-chosen “file descriptor” for the
temporary file. After receiving the call, the server creates a
temporary file in the same file system as the specified handle
and keeps a mapping from the per-client file descriptor to the
temporary file. Because clients choose the descriptors for
temporary files, they can pipeline operations on temporary
files before the MKTMPFILE RPC returns.
TMPWRITE is similar to a WRITE RPC. The only dif-

ference is the that a client-chosen temporary file descriptor
replaces the NFS file handle in the arguments. An LBFS
client sends TMPWRITEs instead of WRITEs to update a
file created with MKTMPFILE.
CONDWRITE is similar to a TMPWRITE RPC. The ar-

guments contain a file descriptor, offset, and length. Instead
of the actual data to write, however, CONDWRITE argu-
ments contain a SHA-1 hash of the data. If the server can
find the data specified by the hash somewhere in its file sys-
tem, it writes the data to the temporary file at the specified
offset. If it cannot find the data, but the request would other-
wise have completed, CONDWRITE returns the special er-
ror code HASHNOTFOUND.
COMMITTMP commits the contents of a temporary file

to a permanent file if no error has occurred. It takes two argu-
ments, a file descriptor for the temporary file, and a file han-
dle for the permanent file. For each temporary file descrip-
tor, the server keeps track of any errors other than HASH-
NOTFOUND that have occured during CONDWRITE and
TMPWRITE RPCs. If any error has occurred on the file de-
scriptor (e.g., disk full), COMMITTMP fails. Otherwise, the
server replaces the contents of the target file with that of the

temporary file and updates the chunk database to reflect the
file’s new contents. Since LBFS uses TCP, RPCs are deliv-
ered in order. Thus, the client can pipeline a COMMITTMP
operation behind TMPWRITE RPCs.
Figure 3 shows the file write protocol in action. When

a user closes a file that the client must write back, the
client picks a file descriptor and issues a MKTMPFILE RPC
with the handle of the closed file. In response, the server
creates a temporary file handle and maps it to the speci-
fied file descriptor. The client then makes CONDWRITE
RPCs for all data chunks in the file it is writing back.
For any CONDWRITEs returning HASHNOTFOUND, the
client also issues TMPWRITE calls. Finally, the client issues
a COMMITTMP.
Pipelining of writes occurs in two stages. First, the client

pipelines a series of CONDWRITE requests behind a MK-
TMPFILE RPC. Second, as the CONDWRITE replies come
back, the client turns around and issues TMPWRITE RPCs
for any HASHNOTFOUND responses. It pipelines the
COMMITTMP immediately behind the last TMPWRITE.
The communication overhead is therefore generally two
round trip latencies, plus the transmission times of the RPCs.
For large files, the client has a maximum limit on the num-
ber of outstanding CONDWRITE and TMPWRITE calls so
as not to spend too much time sending calls when it can pro-
cess replies. However, the extra network round trips will
generally overlap with the transmission time of RPC calls.

3.2.4 Security Considerations
Because LBFS performs well over a wider range of net-
works than most file systems, the protocol must resist a

File writes

HASHNOTFOUNDOK

OK

OK

OK

OK

Server

MKTMPFILE(fd,fhandle)

TMPWRITE(fd,offset2,count2,data)

CONDWRITE(fd,offset1,count1,sha1)

CONDWRITE(fd,offset2,count2,sha2)

CONDWRITE(fd,offset3,count3,sha3)

Client

User closes file

Put sha2 into database

No error, copy data from tmp file

Pick fd

Server needs sha2, send data

File closed, return to user

sha1 in database, write data into tmp file

sha2 not in database

sha3 in database, write data into tmp file

Create tmp file, map (client, fd) to file

Server has sha3
Server has everything, commit

Break file into chunks

Send SHA−1 hashes to server

write data into tmp file

into target file

COMMITTMP(fd,target_fhandle)

Server has sha1

Figure 3: Writing a file using LBFS

the file handle of the file that will eventually be atomically
updated, and second, a client-chosen “file descriptor” for the
temporary file. After receiving the call, the server creates a
temporary file in the same file system as the specified handle
and keeps a mapping from the per-client file descriptor to the
temporary file. Because clients choose the descriptors for
temporary files, they can pipeline operations on temporary
files before the MKTMPFILE RPC returns.
TMPWRITE is similar to a WRITE RPC. The only dif-

ference is the that a client-chosen temporary file descriptor
replaces the NFS file handle in the arguments. An LBFS
client sends TMPWRITEs instead of WRITEs to update a
file created with MKTMPFILE.
CONDWRITE is similar to a TMPWRITE RPC. The ar-

guments contain a file descriptor, offset, and length. Instead
of the actual data to write, however, CONDWRITE argu-
ments contain a SHA-1 hash of the data. If the server can
find the data specified by the hash somewhere in its file sys-
tem, it writes the data to the temporary file at the specified
offset. If it cannot find the data, but the request would other-
wise have completed, CONDWRITE returns the special er-
ror code HASHNOTFOUND.
COMMITTMP commits the contents of a temporary file

to a permanent file if no error has occurred. It takes two argu-
ments, a file descriptor for the temporary file, and a file han-
dle for the permanent file. For each temporary file descrip-
tor, the server keeps track of any errors other than HASH-
NOTFOUND that have occured during CONDWRITE and
TMPWRITE RPCs. If any error has occurred on the file de-
scriptor (e.g., disk full), COMMITTMP fails. Otherwise, the
server replaces the contents of the target file with that of the

temporary file and updates the chunk database to reflect the
file’s new contents. Since LBFS uses TCP, RPCs are deliv-
ered in order. Thus, the client can pipeline a COMMITTMP
operation behind TMPWRITE RPCs.
Figure 3 shows the file write protocol in action. When

a user closes a file that the client must write back, the
client picks a file descriptor and issues a MKTMPFILE RPC
with the handle of the closed file. In response, the server
creates a temporary file handle and maps it to the speci-
fied file descriptor. The client then makes CONDWRITE
RPCs for all data chunks in the file it is writing back.
For any CONDWRITEs returning HASHNOTFOUND, the
client also issues TMPWRITE calls. Finally, the client issues
a COMMITTMP.
Pipelining of writes occurs in two stages. First, the client

pipelines a series of CONDWRITE requests behind a MK-
TMPFILE RPC. Second, as the CONDWRITE replies come
back, the client turns around and issues TMPWRITE RPCs
for any HASHNOTFOUND responses. It pipelines the
COMMITTMP immediately behind the last TMPWRITE.
The communication overhead is therefore generally two
round trip latencies, plus the transmission times of the RPCs.
For large files, the client has a maximum limit on the num-
ber of outstanding CONDWRITE and TMPWRITE calls so
as not to spend too much time sending calls when it can pro-
cess replies. However, the extra network round trips will
generally overlap with the transmission time of RPC calls.

3.2.4 Security Considerations
Because LBFS performs well over a wider range of net-
works than most file systems, the protocol must resist a

Target file must be
assembled using

the chunks

File writes

HASHNOTFOUNDOK

OK

OK

OK

OK

Server

MKTMPFILE(fd,fhandle)

TMPWRITE(fd,offset2,count2,data)

CONDWRITE(fd,offset1,count1,sha1)

CONDWRITE(fd,offset2,count2,sha2)

CONDWRITE(fd,offset3,count3,sha3)

Client

User closes file

Put sha2 into database

No error, copy data from tmp file

Pick fd

Server needs sha2, send data

File closed, return to user

sha1 in database, write data into tmp file

sha2 not in database

sha3 in database, write data into tmp file

Create tmp file, map (client, fd) to file

Server has sha3
Server has everything, commit

Break file into chunks

Send SHA−1 hashes to server

write data into tmp file

into target file

COMMITTMP(fd,target_fhandle)

Server has sha1

Figure 3: Writing a file using LBFS

the file handle of the file that will eventually be atomically
updated, and second, a client-chosen “file descriptor” for the
temporary file. After receiving the call, the server creates a
temporary file in the same file system as the specified handle
and keeps a mapping from the per-client file descriptor to the
temporary file. Because clients choose the descriptors for
temporary files, they can pipeline operations on temporary
files before the MKTMPFILE RPC returns.
TMPWRITE is similar to a WRITE RPC. The only dif-

ference is the that a client-chosen temporary file descriptor
replaces the NFS file handle in the arguments. An LBFS
client sends TMPWRITEs instead of WRITEs to update a
file created with MKTMPFILE.
CONDWRITE is similar to a TMPWRITE RPC. The ar-

guments contain a file descriptor, offset, and length. Instead
of the actual data to write, however, CONDWRITE argu-
ments contain a SHA-1 hash of the data. If the server can
find the data specified by the hash somewhere in its file sys-
tem, it writes the data to the temporary file at the specified
offset. If it cannot find the data, but the request would other-
wise have completed, CONDWRITE returns the special er-
ror code HASHNOTFOUND.
COMMITTMP commits the contents of a temporary file

to a permanent file if no error has occurred. It takes two argu-
ments, a file descriptor for the temporary file, and a file han-
dle for the permanent file. For each temporary file descrip-
tor, the server keeps track of any errors other than HASH-
NOTFOUND that have occured during CONDWRITE and
TMPWRITE RPCs. If any error has occurred on the file de-
scriptor (e.g., disk full), COMMITTMP fails. Otherwise, the
server replaces the contents of the target file with that of the

temporary file and updates the chunk database to reflect the
file’s new contents. Since LBFS uses TCP, RPCs are deliv-
ered in order. Thus, the client can pipeline a COMMITTMP
operation behind TMPWRITE RPCs.
Figure 3 shows the file write protocol in action. When

a user closes a file that the client must write back, the
client picks a file descriptor and issues a MKTMPFILE RPC
with the handle of the closed file. In response, the server
creates a temporary file handle and maps it to the speci-
fied file descriptor. The client then makes CONDWRITE
RPCs for all data chunks in the file it is writing back.
For any CONDWRITEs returning HASHNOTFOUND, the
client also issues TMPWRITE calls. Finally, the client issues
a COMMITTMP.
Pipelining of writes occurs in two stages. First, the client

pipelines a series of CONDWRITE requests behind a MK-
TMPFILE RPC. Second, as the CONDWRITE replies come
back, the client turns around and issues TMPWRITE RPCs
for any HASHNOTFOUND responses. It pipelines the
COMMITTMP immediately behind the last TMPWRITE.
The communication overhead is therefore generally two
round trip latencies, plus the transmission times of the RPCs.
For large files, the client has a maximum limit on the num-
ber of outstanding CONDWRITE and TMPWRITE calls so
as not to spend too much time sending calls when it can pro-
cess replies. However, the extra network round trips will
generally overlap with the transmission time of RPC calls.

3.2.4 Security Considerations
Because LBFS performs well over a wider range of net-
works than most file systems, the protocol must resist a

File writes

HASHNOTFOUNDOK

OK

OK

OK

OK

Server

MKTMPFILE(fd,fhandle)

TMPWRITE(fd,offset2,count2,data)

CONDWRITE(fd,offset1,count1,sha1)

CONDWRITE(fd,offset2,count2,sha2)

CONDWRITE(fd,offset3,count3,sha3)

Client

User closes file

Put sha2 into database

No error, copy data from tmp file

Pick fd

Server needs sha2, send data

File closed, return to user

sha1 in database, write data into tmp file

sha2 not in database

sha3 in database, write data into tmp file

Create tmp file, map (client, fd) to file

Server has sha3
Server has everything, commit

Break file into chunks

Send SHA−1 hashes to server

write data into tmp file

into target file

COMMITTMP(fd,target_fhandle)

Server has sha1

Figure 3: Writing a file using LBFS

the file handle of the file that will eventually be atomically
updated, and second, a client-chosen “file descriptor” for the
temporary file. After receiving the call, the server creates a
temporary file in the same file system as the specified handle
and keeps a mapping from the per-client file descriptor to the
temporary file. Because clients choose the descriptors for
temporary files, they can pipeline operations on temporary
files before the MKTMPFILE RPC returns.
TMPWRITE is similar to a WRITE RPC. The only dif-

ference is the that a client-chosen temporary file descriptor
replaces the NFS file handle in the arguments. An LBFS
client sends TMPWRITEs instead of WRITEs to update a
file created with MKTMPFILE.
CONDWRITE is similar to a TMPWRITE RPC. The ar-

guments contain a file descriptor, offset, and length. Instead
of the actual data to write, however, CONDWRITE argu-
ments contain a SHA-1 hash of the data. If the server can
find the data specified by the hash somewhere in its file sys-
tem, it writes the data to the temporary file at the specified
offset. If it cannot find the data, but the request would other-
wise have completed, CONDWRITE returns the special er-
ror code HASHNOTFOUND.
COMMITTMP commits the contents of a temporary file

to a permanent file if no error has occurred. It takes two argu-
ments, a file descriptor for the temporary file, and a file han-
dle for the permanent file. For each temporary file descrip-
tor, the server keeps track of any errors other than HASH-
NOTFOUND that have occured during CONDWRITE and
TMPWRITE RPCs. If any error has occurred on the file de-
scriptor (e.g., disk full), COMMITTMP fails. Otherwise, the
server replaces the contents of the target file with that of the

temporary file and updates the chunk database to reflect the
file’s new contents. Since LBFS uses TCP, RPCs are deliv-
ered in order. Thus, the client can pipeline a COMMITTMP
operation behind TMPWRITE RPCs.
Figure 3 shows the file write protocol in action. When

a user closes a file that the client must write back, the
client picks a file descriptor and issues a MKTMPFILE RPC
with the handle of the closed file. In response, the server
creates a temporary file handle and maps it to the speci-
fied file descriptor. The client then makes CONDWRITE
RPCs for all data chunks in the file it is writing back.
For any CONDWRITEs returning HASHNOTFOUND, the
client also issues TMPWRITE calls. Finally, the client issues
a COMMITTMP.
Pipelining of writes occurs in two stages. First, the client

pipelines a series of CONDWRITE requests behind a MK-
TMPFILE RPC. Second, as the CONDWRITE replies come
back, the client turns around and issues TMPWRITE RPCs
for any HASHNOTFOUND responses. It pipelines the
COMMITTMP immediately behind the last TMPWRITE.
The communication overhead is therefore generally two
round trip latencies, plus the transmission times of the RPCs.
For large files, the client has a maximum limit on the num-
ber of outstanding CONDWRITE and TMPWRITE calls so
as not to spend too much time sending calls when it can pro-
cess replies. However, the extra network round trips will
generally overlap with the transmission time of RPC calls.

3.2.4 Security Considerations
Because LBFS performs well over a wider range of net-
works than most file systems, the protocol must resist a

File writes

HASHNOTFOUNDOK

OK

OK

OK

OK

Server

MKTMPFILE(fd,fhandle)

TMPWRITE(fd,offset2,count2,data)

CONDWRITE(fd,offset1,count1,sha1)

CONDWRITE(fd,offset2,count2,sha2)

CONDWRITE(fd,offset3,count3,sha3)

Client

User closes file

Put sha2 into database

No error, copy data from tmp file

Pick fd

Server needs sha2, send data

File closed, return to user

sha1 in database, write data into tmp file

sha2 not in database

sha3 in database, write data into tmp file

Create tmp file, map (client, fd) to file

Server has sha3
Server has everything, commit

Break file into chunks

Send SHA−1 hashes to server

write data into tmp file

into target file

COMMITTMP(fd,target_fhandle)

Server has sha1

Figure 3: Writing a file using LBFS

the file handle of the file that will eventually be atomically
updated, and second, a client-chosen “file descriptor” for the
temporary file. After receiving the call, the server creates a
temporary file in the same file system as the specified handle
and keeps a mapping from the per-client file descriptor to the
temporary file. Because clients choose the descriptors for
temporary files, they can pipeline operations on temporary
files before the MKTMPFILE RPC returns.
TMPWRITE is similar to a WRITE RPC. The only dif-

ference is the that a client-chosen temporary file descriptor
replaces the NFS file handle in the arguments. An LBFS
client sends TMPWRITEs instead of WRITEs to update a
file created with MKTMPFILE.
CONDWRITE is similar to a TMPWRITE RPC. The ar-

guments contain a file descriptor, offset, and length. Instead
of the actual data to write, however, CONDWRITE argu-
ments contain a SHA-1 hash of the data. If the server can
find the data specified by the hash somewhere in its file sys-
tem, it writes the data to the temporary file at the specified
offset. If it cannot find the data, but the request would other-
wise have completed, CONDWRITE returns the special er-
ror code HASHNOTFOUND.
COMMITTMP commits the contents of a temporary file

to a permanent file if no error has occurred. It takes two argu-
ments, a file descriptor for the temporary file, and a file han-
dle for the permanent file. For each temporary file descrip-
tor, the server keeps track of any errors other than HASH-
NOTFOUND that have occured during CONDWRITE and
TMPWRITE RPCs. If any error has occurred on the file de-
scriptor (e.g., disk full), COMMITTMP fails. Otherwise, the
server replaces the contents of the target file with that of the

temporary file and updates the chunk database to reflect the
file’s new contents. Since LBFS uses TCP, RPCs are deliv-
ered in order. Thus, the client can pipeline a COMMITTMP
operation behind TMPWRITE RPCs.
Figure 3 shows the file write protocol in action. When

a user closes a file that the client must write back, the
client picks a file descriptor and issues a MKTMPFILE RPC
with the handle of the closed file. In response, the server
creates a temporary file handle and maps it to the speci-
fied file descriptor. The client then makes CONDWRITE
RPCs for all data chunks in the file it is writing back.
For any CONDWRITEs returning HASHNOTFOUND, the
client also issues TMPWRITE calls. Finally, the client issues
a COMMITTMP.
Pipelining of writes occurs in two stages. First, the client

pipelines a series of CONDWRITE requests behind a MK-
TMPFILE RPC. Second, as the CONDWRITE replies come
back, the client turns around and issues TMPWRITE RPCs
for any HASHNOTFOUND responses. It pipelines the
COMMITTMP immediately behind the last TMPWRITE.
The communication overhead is therefore generally two
round trip latencies, plus the transmission times of the RPCs.
For large files, the client has a maximum limit on the num-
ber of outstanding CONDWRITE and TMPWRITE calls so
as not to spend too much time sending calls when it can pro-
cess replies. However, the extra network round trips will
generally overlap with the transmission time of RPC calls.

3.2.4 Security Considerations
Because LBFS performs well over a wider range of net-
works than most file systems, the protocol must resist a

Security

• Every server has a public key

• Messages (protocol) are compressed, tagged
with an authentication code, and then encrypted

•At mount time, the client and server negotiate a
session key

Implementation

•Server and client run at user-level

•Server accesses files through NFS

•Client and server communicates over TCP

•Client implements the file system using XFS

Implementation

index

NFS

index

server

TCP

xfs
client

server
LBFS

client
LBFSchunk chunk

Figure 4: Overview of the LBFS implementation.

wider range of attacks. LBFS uses the security infrastruc-
ture from SFS [16]. Every server has a public key, which
the client administrator specifies on the command line when
mounting the server. In the future, we intend to embed pub-
lic keys in pathnames as SFS does and to integrate LBFS
into SFS’s auto-mounting system so that unprivileged users
on clients can access any server. The entire LBFS proto-
col, RPC headers and all, is passed through gzip compres-
sion, tagged with a message authentication code, and then
encrypted. At mount time, the client and server negotiate a
session key, the server authenticates itself to the user, and the
user authenticates herself to the client, all using public key
cryptography.
Finally, we note that LBFS may raise some non-network

security issues. When several users share the same file sys-
tem, LBFS could leak information about files a user is not
allowed to read. Specifically, through careful use of COND-
WRITE, a user can check whether the file system contains a
particular chunk of data, even if the data resides in a read-
protected file. Though CONDWRITE will fail on chunks the
user cannot read, subtle timing differences may still let the
user infer that the database contained the hash of the chunk.
Nonetheless, LBFS should provide more than adequate secu-
rity for most purposes, particularly given how widely users
accept file systems that do not even encrypt network traffic.

4 Implementation
Figure 4 shows the architecture of the LBFS implementa-
tion. Both the client and server run at user-level. The client
implements the file system using xfs, a device driver bun-
dled with the ARLA [24] file system. The server accesses
files through NFS. The client and server communicate over
TCP, using Sun RPC. We used the asynchronous RPC li-
brary from the SFS toolkit [15] both for the server’s NFS
client and for LBFS client–server communication. The RPC
library already had support for authenticating and encrypt-
ing traffic between a client and server. We added support for
compression.

4.1 Chunk Index
The LBFS client and server both maintain chunk indexes,
the server indexing file system contents and the client its lo-
cal cache. The two share the same indexing code, imple-

mented using the B-tree from SleepyCat software’s Berke-
leyDB package. Since LBFS never relies on chunk database
correctness, it also does not concern itself with crash recov-
erability. LBFS avoids any synchronous database updates,
and the server always replies to clients before inserting new
chunks in its database. If the database loses a few hashes,
clients will simply use more bandwidth until the database
comes back up to date. There is a utility, mkdb, which builds
a file system’s database from scratch. However, if an LBFS
server is run without a database, the server simply creates the
database and populates it as users access files.
The one database operation on the critical path for clients

is the lookup done as part of a CONDWRITE RPC. How-
ever, for all but the smallest files, CONDWRITEs are
pipelined deeply enough to overlap database lookups with
the transmission of any write data not found in the chunk
index. For 8 KByte or smaller files, LBFS avoids COND-
WRITEs and simply writes the files directly to the server in
a single RPC. The overhead of multiple round trip times
overshadows any potential bandwidth savings on such small
files.

4.2 Server Implementation
Our main goal for the LBFS server implementation, other
than saving bandwidth and providing acceptable perfor-
mance, was to build a system that could unobtrusively be
installed on an already running file system. This both iso-
lates LBFS’s benefits from physical file system layout and
lets users take immediate advantage of LBFS on existing
files without dedicating a disk or partition to it.
The LBFS server accesses the file system by pretending to

be an NFS client, effectively translating LBFS requests into
NFS. Building the LBFS server as an NFS client lets LBFS
serve any file system for which an NFS server exists, which
includes most file systems on most Unix operating systems.
Of course, the server might alternatively have been imple-

mented using regular system calls to access the file system.
However, NFS offers several advantages over the traditional
system call interface. First, it simplifies the implementation,
since the LBFS protocol is based on NFS. Second, NFS
saved the LBFS server from the need to implement access
control. The server simply maps LBFS requests to user IDs
and tags the resulting NFS requests with those IDs, letting
the NFS server decide whether or not to grant access. Fi-

Local cache Content

Implementation

index

NFS

index

server

TCP

xfs
client

server
LBFS

client
LBFSchunk chunk

Figure 4: Overview of the LBFS implementation.

wider range of attacks. LBFS uses the security infrastruc-
ture from SFS [16]. Every server has a public key, which
the client administrator specifies on the command line when
mounting the server. In the future, we intend to embed pub-
lic keys in pathnames as SFS does and to integrate LBFS
into SFS’s auto-mounting system so that unprivileged users
on clients can access any server. The entire LBFS proto-
col, RPC headers and all, is passed through gzip compres-
sion, tagged with a message authentication code, and then
encrypted. At mount time, the client and server negotiate a
session key, the server authenticates itself to the user, and the
user authenticates herself to the client, all using public key
cryptography.
Finally, we note that LBFS may raise some non-network

security issues. When several users share the same file sys-
tem, LBFS could leak information about files a user is not
allowed to read. Specifically, through careful use of COND-
WRITE, a user can check whether the file system contains a
particular chunk of data, even if the data resides in a read-
protected file. Though CONDWRITE will fail on chunks the
user cannot read, subtle timing differences may still let the
user infer that the database contained the hash of the chunk.
Nonetheless, LBFS should provide more than adequate secu-
rity for most purposes, particularly given how widely users
accept file systems that do not even encrypt network traffic.

4 Implementation
Figure 4 shows the architecture of the LBFS implementa-
tion. Both the client and server run at user-level. The client
implements the file system using xfs, a device driver bun-
dled with the ARLA [24] file system. The server accesses
files through NFS. The client and server communicate over
TCP, using Sun RPC. We used the asynchronous RPC li-
brary from the SFS toolkit [15] both for the server’s NFS
client and for LBFS client–server communication. The RPC
library already had support for authenticating and encrypt-
ing traffic between a client and server. We added support for
compression.

4.1 Chunk Index
The LBFS client and server both maintain chunk indexes,
the server indexing file system contents and the client its lo-
cal cache. The two share the same indexing code, imple-

mented using the B-tree from SleepyCat software’s Berke-
leyDB package. Since LBFS never relies on chunk database
correctness, it also does not concern itself with crash recov-
erability. LBFS avoids any synchronous database updates,
and the server always replies to clients before inserting new
chunks in its database. If the database loses a few hashes,
clients will simply use more bandwidth until the database
comes back up to date. There is a utility, mkdb, which builds
a file system’s database from scratch. However, if an LBFS
server is run without a database, the server simply creates the
database and populates it as users access files.
The one database operation on the critical path for clients

is the lookup done as part of a CONDWRITE RPC. How-
ever, for all but the smallest files, CONDWRITEs are
pipelined deeply enough to overlap database lookups with
the transmission of any write data not found in the chunk
index. For 8 KByte or smaller files, LBFS avoids COND-
WRITEs and simply writes the files directly to the server in
a single RPC. The overhead of multiple round trip times
overshadows any potential bandwidth savings on such small
files.

4.2 Server Implementation
Our main goal for the LBFS server implementation, other
than saving bandwidth and providing acceptable perfor-
mance, was to build a system that could unobtrusively be
installed on an already running file system. This both iso-
lates LBFS’s benefits from physical file system layout and
lets users take immediate advantage of LBFS on existing
files without dedicating a disk or partition to it.
The LBFS server accesses the file system by pretending to

be an NFS client, effectively translating LBFS requests into
NFS. Building the LBFS server as an NFS client lets LBFS
serve any file system for which an NFS server exists, which
includes most file systems on most Unix operating systems.
Of course, the server might alternatively have been imple-

mented using regular system calls to access the file system.
However, NFS offers several advantages over the traditional
system call interface. First, it simplifies the implementation,
since the LBFS protocol is based on NFS. Second, NFS
saved the LBFS server from the need to implement access
control. The server simply maps LBFS requests to user IDs
and tags the resulting NFS requests with those IDs, letting
the NFS server decide whether or not to grant access. Fi-

Local cache Content

NFS client

Implementation

index

NFS

index

server

TCP

xfs
client

server
LBFS

client
LBFSchunk chunk

Figure 4: Overview of the LBFS implementation.

wider range of attacks. LBFS uses the security infrastruc-
ture from SFS [16]. Every server has a public key, which
the client administrator specifies on the command line when
mounting the server. In the future, we intend to embed pub-
lic keys in pathnames as SFS does and to integrate LBFS
into SFS’s auto-mounting system so that unprivileged users
on clients can access any server. The entire LBFS proto-
col, RPC headers and all, is passed through gzip compres-
sion, tagged with a message authentication code, and then
encrypted. At mount time, the client and server negotiate a
session key, the server authenticates itself to the user, and the
user authenticates herself to the client, all using public key
cryptography.
Finally, we note that LBFS may raise some non-network

security issues. When several users share the same file sys-
tem, LBFS could leak information about files a user is not
allowed to read. Specifically, through careful use of COND-
WRITE, a user can check whether the file system contains a
particular chunk of data, even if the data resides in a read-
protected file. Though CONDWRITE will fail on chunks the
user cannot read, subtle timing differences may still let the
user infer that the database contained the hash of the chunk.
Nonetheless, LBFS should provide more than adequate secu-
rity for most purposes, particularly given how widely users
accept file systems that do not even encrypt network traffic.

4 Implementation
Figure 4 shows the architecture of the LBFS implementa-
tion. Both the client and server run at user-level. The client
implements the file system using xfs, a device driver bun-
dled with the ARLA [24] file system. The server accesses
files through NFS. The client and server communicate over
TCP, using Sun RPC. We used the asynchronous RPC li-
brary from the SFS toolkit [15] both for the server’s NFS
client and for LBFS client–server communication. The RPC
library already had support for authenticating and encrypt-
ing traffic between a client and server. We added support for
compression.

4.1 Chunk Index
The LBFS client and server both maintain chunk indexes,
the server indexing file system contents and the client its lo-
cal cache. The two share the same indexing code, imple-

mented using the B-tree from SleepyCat software’s Berke-
leyDB package. Since LBFS never relies on chunk database
correctness, it also does not concern itself with crash recov-
erability. LBFS avoids any synchronous database updates,
and the server always replies to clients before inserting new
chunks in its database. If the database loses a few hashes,
clients will simply use more bandwidth until the database
comes back up to date. There is a utility, mkdb, which builds
a file system’s database from scratch. However, if an LBFS
server is run without a database, the server simply creates the
database and populates it as users access files.
The one database operation on the critical path for clients

is the lookup done as part of a CONDWRITE RPC. How-
ever, for all but the smallest files, CONDWRITEs are
pipelined deeply enough to overlap database lookups with
the transmission of any write data not found in the chunk
index. For 8 KByte or smaller files, LBFS avoids COND-
WRITEs and simply writes the files directly to the server in
a single RPC. The overhead of multiple round trip times
overshadows any potential bandwidth savings on such small
files.

4.2 Server Implementation
Our main goal for the LBFS server implementation, other
than saving bandwidth and providing acceptable perfor-
mance, was to build a system that could unobtrusively be
installed on an already running file system. This both iso-
lates LBFS’s benefits from physical file system layout and
lets users take immediate advantage of LBFS on existing
files without dedicating a disk or partition to it.
The LBFS server accesses the file system by pretending to

be an NFS client, effectively translating LBFS requests into
NFS. Building the LBFS server as an NFS client lets LBFS
serve any file system for which an NFS server exists, which
includes most file systems on most Unix operating systems.
Of course, the server might alternatively have been imple-

mented using regular system calls to access the file system.
However, NFS offers several advantages over the traditional
system call interface. First, it simplifies the implementation,
since the LBFS protocol is based on NFS. Second, NFS
saved the LBFS server from the need to implement access
control. The server simply maps LBFS requests to user IDs
and tags the resulting NFS requests with those IDs, letting
the NFS server decide whether or not to grant access. Fi-

Local cache Content

NFS client

Access control

Evaluation

• Bandwidth consumption and network
utilization of LBFS under several common
workloads

•Comparison to CIFS, NFS version 3, and
AFS

Evaluation - workloads

•MSWord: open a MSWord document
(1.4MByte) about Windows 2000 and edit its
references

•gcc: recompile emacs 20.7 from source,
after modifying a header file

•ed: transform the perl 5.6.0 source tree into
perl 5.6.1

Bandwidth utilization

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

Upstream Downstream
 (writing) (reading)

Bandwidth utilization

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

Upstream Downstream
 (writing) (reading)

Bandwidth utilization

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

Upstream Downstream
 (writing) (reading)

Bandwidth utilization (downstream)

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

Caching

Bandwidth utilization (upstream)

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

Writes are deferred to close time

Bandwidth utilization (upstream)

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

Compression

Bandwidth utilization (upstream)

MSWord gcc ed
0.0

0.5

1.0

N
or

m
al

iz
ed

 b
an

dw
id

th

CIFS
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NFS.

its as for Table 1, then measure the cost to save and close the
file.1 For the second workload, gcc, we simply recompile
emacs 20.7 from source. The third workload, ed, involves
making a series of changes to the perl 5.6.0 source tree to
transform it into perl 5.6.1. Using the expect language, we
scripted the ed text editor based on the output of diff. The
benchmark saves files after text insertion operations if there
have been 40 or more lines of editing. (For reference, emacs
creates auto-save files every 300 characters typed.) These
workloads reflect the common activities of document editing
and software development.

We ran each benchmark over the client’s native network
file system—CIFS for Windows and NFS UDP for Unix.2
We also ran all three benchmarks over AFS. To isolate
the benefits of exploiting file commonality, we additionally
measured a “Leases+Gzip” file system that uses LBFS’s file
caching, leases, and data compression, but not its chunking
scheme. Finally, we ran the three workloads over LBFS.

For the MSWord benchmark, because LBFS only runs on
Unix, we ran a Samba server on the OpenBSD LBFS client,
re-exporting the LBFS file system with CIFS. We saved the
Word document from the Windows 98 client to the Samba
server over 100 Mbit Ethernet, and measured the traffic go-
ing through the Click router between the Samba server and
the LBFS server. All MSWord experiments were conducted
with a warm cache; the original files had been written on the
same client through the file system under test. However, the
LBFS server did not have output files from previous runs of
the benchmark in its database.

For the gcc benchmark, the emacs sources had been un-
packed through the file system under test. Emacs had also
previously been compiled on the same file system. The in-
tent was to to simulate what happens when one modifies a
header file that requires an entire project to be recompiled.
Though two successive compilations of emacs do not pro-
duce the same executable, there was substantial commonal-

1We did not enable Word’s “fast saves” feature, as it neither reduced
write bandwidth nor improved running time.

2NFS TCP performs worse than NFS UDP, probably because it has not
been as extensively tested and tuned.

ity between object files created by the benchmark and ones
in the server’s trash directory. To isolate this benefit, we also
measured a compilation of emacs when the LBFS server was
started with a new database not containing chunks from any
previous compiles.

Because of a bug in expect on OpenBSD, we used a
FreeBSD client for all instances of the ed benchmark. Like
the MSWord benchmark, we ran ed with a warm client cache
to a server that had not previously seen the output files. We
also ran ed over an ssh remote login connection, to compare
using a distributed file system to running a text editor re-
motely. To simulate some type-ahead, the benchmark sends
one line at a time and waits for the line to echo.

5.3 Bandwidth Utilization
Figure 6 shows the bandwidth consumed by the client writ-
ing to and reading from the server under each of the three
workloads. The bandwidth numbers are obtained from byte
counters in the Click router. For this experiment, the router
did not impose any delay, loss, or bandwidth limitations.
(ttcp reported TCP throughput of 89 Mbit/sec between the
client and server, and ping reported a round-trip time of
0.2 ms.) In each case, we separately report first the upstream
traffic from client to server, then the downstream traffic from
server to client. The numbers are normalized to the upstream
(client to server) bandwidth of the native file system, CIFS
on Windows and NFS on Unix.

Because AFS, Leases+Gzip, and LBFS all have large, on-
disk caches, all three systems reduce the amount of down-
stream bandwidth from server to client when compared to the
native file systems. For upstream bandwidth, the drops from
CIFS and NFS bandwidth to AFS bandwidth represent sav-
ings gained from deferring writes to close time and eliding
overwrites of the same data. The drops from AFS bandwidth
to Leases+Gzip bandwidth represent savings from compres-
sion. Finally, the drops from Leases+Gzip bandwidth to
LBFS bandwidth represent savings gained from the chunk-
ing scheme.

For the MSWord workload, the savings provided by the

Chunking

Application performance

MSWord gcc ed
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

a)

6

101

84 86

16
138

1312

470

193 182
113

61

1830

977

340 319

CIFS LAN
CIFS
NFS LAN
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

MSWord gcc

 20%

 40%

 60%

 80%

100%

U
pl

in
k

ut
ili

za
tio

n

b)

Figure 7: a) Normalized application performance on top of several file systems over a cable modem link with 384 Kbit/sec uplink and
1.5 Mbit/sec downlink. Execution times are normalized against CIFS or NFS results. Execution times in seconds appear on top of the
bars. b) Uplink bandwidth utilization of the MSWord and gcc benchmarks.

chunking scheme come not only from commonality between
the old and new versions of the document, but also from
commonality with large temporary files that Word creates
during saves. LBFS is able to reduce the upstream band-
width by 15 times over Leases+Gzip, 16 times over AFS, and
20 times over CIFS. More careful analysis reveals that the
Unix Samba server closes then reopens temporary files, re-
quiring them to be transferred multiple times. These multiple
transfers largely negate the benefits of gzip compression in
Leases+Gzip. In contrast, LBFS exploits the files’ common
contents from one close to the next, consuming very little
unnecessary traffic. AFS uses only slightly more bore band-
width than Leases+Gzip, either because the extra closes are
an artifact of the Unix Samba server, or perhaps because the
Windows AFS implementation performs partial file caching.

For the gcc benchmark, the savings provided by the
chunking scheme come from the fact that many of the com-
piled object files, libraries, and executables are similar or
identical to files in the server’s trash directory. Chunks only
need to be written to the server where object files differ or
files have been evicted from the trash directory. In this case,
LBFS was able to reduce the upstream bandwidth by 15
times over Leases+Gzip, 46 times over AFS, and more than
64 times over NFS. Even without the benefit of old object
files in the database, LBFS still reduces upstream bandwidth
utilization because many object files, libraries, and executa-
bles share common data. When started with a new and empty
chunk database, LBFS still used 30% less upstream band-
width than Leases+Gzip.

In the ed case, the savings provided by the chunking
scheme come from writing versions of files that share com-
mon chunks with older revisions. LBFS was able to reduce
the upstream bandwidth by more than a factor of 2 over
Leases+Gzip and 8 over AFS and NFS.

5.4 Application Performance
Figure 7a shows the normalized end-to-end application per-
formance of the three workloads on a simulated cable mo-
dem link, with 1.5 Mbit/sec downstream bandwidth from
server to client, 384 Kbit/sec upstream bandwidth from client
to server, and 30 ms of round-trip latency. The execution
times are normalized against CIFS or NFS results. For com-
parison, we also show the execution times of the native file
system on a 100 Mbit/sec full-duplex LAN.

For the MSWord workload, LBFS was able to reduce
the execution times from a potentially unusable 101 sec-
onds with CIFS to a much more tolerable 16 seconds, more
than 6 times faster. In fact, AFS takes 16 seconds to run
the benchmark on a LAN, though CIFS takes only 6 sec-
onds. The gcc workload took 113 seconds under LBFS with
a populated database, 1.7 times faster than Leases+Gzip, 4
times faster than AFS, almost 12 times faster than NFS,
and 18% faster than NFS on a LAN. With a new server
database, LBFS still reduces the execution time by 6% over
Leases+Gzip, though it is 32% slower than NFS on a LAN.

For both the MSWord and gcc workloads, Figure 7b shows
that LBFS reduces network utilization, or the percentage of
available bandwidth used by the file system. Over LBFS,
gcc used only used only 9.5% of the 384 Kbit per second up-
stream link. In contrast, gcc under NFS used 68% and under
AFS used 96%. For the MSWord benchmarks, LBFS was
able to reduce the upstream network utilization from 87%
and 96% with AFS and CIFS to 29%.

Figure 8 examines the effects of available network band-
width on the performance of the gcc workload over LBFS,
Leases+Gzip, and AFS. In these experiments, the simulated
network has a fixed round trip time of 10 ms. This graph
shows that LBFS is least affected by a reduction in avail-
able network bandwidth, because LBFS reduces the read and

Application performance

MSWord gcc ed
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

a)

6

101

84 86

16
138

1312

470

193 182
113

61

1830

977

340 319

CIFS LAN
CIFS
NFS LAN
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

MSWord gcc

 20%

 40%

 60%

 80%

100%

U
pl

in
k

ut
ili

za
tio

n

b)

Figure 7: a) Normalized application performance on top of several file systems over a cable modem link with 384 Kbit/sec uplink and
1.5 Mbit/sec downlink. Execution times are normalized against CIFS or NFS results. Execution times in seconds appear on top of the
bars. b) Uplink bandwidth utilization of the MSWord and gcc benchmarks.

chunking scheme come not only from commonality between
the old and new versions of the document, but also from
commonality with large temporary files that Word creates
during saves. LBFS is able to reduce the upstream band-
width by 15 times over Leases+Gzip, 16 times over AFS, and
20 times over CIFS. More careful analysis reveals that the
Unix Samba server closes then reopens temporary files, re-
quiring them to be transferred multiple times. These multiple
transfers largely negate the benefits of gzip compression in
Leases+Gzip. In contrast, LBFS exploits the files’ common
contents from one close to the next, consuming very little
unnecessary traffic. AFS uses only slightly more bore band-
width than Leases+Gzip, either because the extra closes are
an artifact of the Unix Samba server, or perhaps because the
Windows AFS implementation performs partial file caching.

For the gcc benchmark, the savings provided by the
chunking scheme come from the fact that many of the com-
piled object files, libraries, and executables are similar or
identical to files in the server’s trash directory. Chunks only
need to be written to the server where object files differ or
files have been evicted from the trash directory. In this case,
LBFS was able to reduce the upstream bandwidth by 15
times over Leases+Gzip, 46 times over AFS, and more than
64 times over NFS. Even without the benefit of old object
files in the database, LBFS still reduces upstream bandwidth
utilization because many object files, libraries, and executa-
bles share common data. When started with a new and empty
chunk database, LBFS still used 30% less upstream band-
width than Leases+Gzip.

In the ed case, the savings provided by the chunking
scheme come from writing versions of files that share com-
mon chunks with older revisions. LBFS was able to reduce
the upstream bandwidth by more than a factor of 2 over
Leases+Gzip and 8 over AFS and NFS.

5.4 Application Performance
Figure 7a shows the normalized end-to-end application per-
formance of the three workloads on a simulated cable mo-
dem link, with 1.5 Mbit/sec downstream bandwidth from
server to client, 384 Kbit/sec upstream bandwidth from client
to server, and 30 ms of round-trip latency. The execution
times are normalized against CIFS or NFS results. For com-
parison, we also show the execution times of the native file
system on a 100 Mbit/sec full-duplex LAN.

For the MSWord workload, LBFS was able to reduce
the execution times from a potentially unusable 101 sec-
onds with CIFS to a much more tolerable 16 seconds, more
than 6 times faster. In fact, AFS takes 16 seconds to run
the benchmark on a LAN, though CIFS takes only 6 sec-
onds. The gcc workload took 113 seconds under LBFS with
a populated database, 1.7 times faster than Leases+Gzip, 4
times faster than AFS, almost 12 times faster than NFS,
and 18% faster than NFS on a LAN. With a new server
database, LBFS still reduces the execution time by 6% over
Leases+Gzip, though it is 32% slower than NFS on a LAN.

For both the MSWord and gcc workloads, Figure 7b shows
that LBFS reduces network utilization, or the percentage of
available bandwidth used by the file system. Over LBFS,
gcc used only used only 9.5% of the 384 Kbit per second up-
stream link. In contrast, gcc under NFS used 68% and under
AFS used 96%. For the MSWord benchmarks, LBFS was
able to reduce the upstream network utilization from 87%
and 96% with AFS and CIFS to 29%.

Figure 8 examines the effects of available network band-
width on the performance of the gcc workload over LBFS,
Leases+Gzip, and AFS. In these experiments, the simulated
network has a fixed round trip time of 10 ms. This graph
shows that LBFS is least affected by a reduction in avail-
able network bandwidth, because LBFS reduces the read and

Application performance

MSWord gcc ed
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

a)

6

101

84 86

16
138

1312

470

193 182
113

61

1830

977

340 319

CIFS LAN
CIFS
NFS LAN
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

MSWord gcc

 20%

 40%

 60%

 80%

100%

U
pl

in
k

ut
ili

za
tio

n

b)

Figure 7: a) Normalized application performance on top of several file systems over a cable modem link with 384 Kbit/sec uplink and
1.5 Mbit/sec downlink. Execution times are normalized against CIFS or NFS results. Execution times in seconds appear on top of the
bars. b) Uplink bandwidth utilization of the MSWord and gcc benchmarks.

chunking scheme come not only from commonality between
the old and new versions of the document, but also from
commonality with large temporary files that Word creates
during saves. LBFS is able to reduce the upstream band-
width by 15 times over Leases+Gzip, 16 times over AFS, and
20 times over CIFS. More careful analysis reveals that the
Unix Samba server closes then reopens temporary files, re-
quiring them to be transferred multiple times. These multiple
transfers largely negate the benefits of gzip compression in
Leases+Gzip. In contrast, LBFS exploits the files’ common
contents from one close to the next, consuming very little
unnecessary traffic. AFS uses only slightly more bore band-
width than Leases+Gzip, either because the extra closes are
an artifact of the Unix Samba server, or perhaps because the
Windows AFS implementation performs partial file caching.

For the gcc benchmark, the savings provided by the
chunking scheme come from the fact that many of the com-
piled object files, libraries, and executables are similar or
identical to files in the server’s trash directory. Chunks only
need to be written to the server where object files differ or
files have been evicted from the trash directory. In this case,
LBFS was able to reduce the upstream bandwidth by 15
times over Leases+Gzip, 46 times over AFS, and more than
64 times over NFS. Even without the benefit of old object
files in the database, LBFS still reduces upstream bandwidth
utilization because many object files, libraries, and executa-
bles share common data. When started with a new and empty
chunk database, LBFS still used 30% less upstream band-
width than Leases+Gzip.

In the ed case, the savings provided by the chunking
scheme come from writing versions of files that share com-
mon chunks with older revisions. LBFS was able to reduce
the upstream bandwidth by more than a factor of 2 over
Leases+Gzip and 8 over AFS and NFS.

5.4 Application Performance
Figure 7a shows the normalized end-to-end application per-
formance of the three workloads on a simulated cable mo-
dem link, with 1.5 Mbit/sec downstream bandwidth from
server to client, 384 Kbit/sec upstream bandwidth from client
to server, and 30 ms of round-trip latency. The execution
times are normalized against CIFS or NFS results. For com-
parison, we also show the execution times of the native file
system on a 100 Mbit/sec full-duplex LAN.

For the MSWord workload, LBFS was able to reduce
the execution times from a potentially unusable 101 sec-
onds with CIFS to a much more tolerable 16 seconds, more
than 6 times faster. In fact, AFS takes 16 seconds to run
the benchmark on a LAN, though CIFS takes only 6 sec-
onds. The gcc workload took 113 seconds under LBFS with
a populated database, 1.7 times faster than Leases+Gzip, 4
times faster than AFS, almost 12 times faster than NFS,
and 18% faster than NFS on a LAN. With a new server
database, LBFS still reduces the execution time by 6% over
Leases+Gzip, though it is 32% slower than NFS on a LAN.

For both the MSWord and gcc workloads, Figure 7b shows
that LBFS reduces network utilization, or the percentage of
available bandwidth used by the file system. Over LBFS,
gcc used only used only 9.5% of the 384 Kbit per second up-
stream link. In contrast, gcc under NFS used 68% and under
AFS used 96%. For the MSWord benchmarks, LBFS was
able to reduce the upstream network utilization from 87%
and 96% with AFS and CIFS to 29%.

Figure 8 examines the effects of available network band-
width on the performance of the gcc workload over LBFS,
Leases+Gzip, and AFS. In these experiments, the simulated
network has a fixed round trip time of 10 ms. This graph
shows that LBFS is least affected by a reduction in avail-
able network bandwidth, because LBFS reduces the read and

Application performance

MSWord gcc ed
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

a)

6

101

84 86

16
138

1312

470

193 182
113

61

1830

977

340 319

CIFS LAN
CIFS
NFS LAN
NFS
AFS
Leases+Gzip
LBFS, new DB
LBFS

MSWord gcc

 20%

 40%

 60%

 80%

100%

U
pl

in
k

ut
ili

za
tio

n

b)

Figure 7: a) Normalized application performance on top of several file systems over a cable modem link with 384 Kbit/sec uplink and
1.5 Mbit/sec downlink. Execution times are normalized against CIFS or NFS results. Execution times in seconds appear on top of the
bars. b) Uplink bandwidth utilization of the MSWord and gcc benchmarks.

chunking scheme come not only from commonality between
the old and new versions of the document, but also from
commonality with large temporary files that Word creates
during saves. LBFS is able to reduce the upstream band-
width by 15 times over Leases+Gzip, 16 times over AFS, and
20 times over CIFS. More careful analysis reveals that the
Unix Samba server closes then reopens temporary files, re-
quiring them to be transferred multiple times. These multiple
transfers largely negate the benefits of gzip compression in
Leases+Gzip. In contrast, LBFS exploits the files’ common
contents from one close to the next, consuming very little
unnecessary traffic. AFS uses only slightly more bore band-
width than Leases+Gzip, either because the extra closes are
an artifact of the Unix Samba server, or perhaps because the
Windows AFS implementation performs partial file caching.

For the gcc benchmark, the savings provided by the
chunking scheme come from the fact that many of the com-
piled object files, libraries, and executables are similar or
identical to files in the server’s trash directory. Chunks only
need to be written to the server where object files differ or
files have been evicted from the trash directory. In this case,
LBFS was able to reduce the upstream bandwidth by 15
times over Leases+Gzip, 46 times over AFS, and more than
64 times over NFS. Even without the benefit of old object
files in the database, LBFS still reduces upstream bandwidth
utilization because many object files, libraries, and executa-
bles share common data. When started with a new and empty
chunk database, LBFS still used 30% less upstream band-
width than Leases+Gzip.

In the ed case, the savings provided by the chunking
scheme come from writing versions of files that share com-
mon chunks with older revisions. LBFS was able to reduce
the upstream bandwidth by more than a factor of 2 over
Leases+Gzip and 8 over AFS and NFS.

5.4 Application Performance
Figure 7a shows the normalized end-to-end application per-
formance of the three workloads on a simulated cable mo-
dem link, with 1.5 Mbit/sec downstream bandwidth from
server to client, 384 Kbit/sec upstream bandwidth from client
to server, and 30 ms of round-trip latency. The execution
times are normalized against CIFS or NFS results. For com-
parison, we also show the execution times of the native file
system on a 100 Mbit/sec full-duplex LAN.

For the MSWord workload, LBFS was able to reduce
the execution times from a potentially unusable 101 sec-
onds with CIFS to a much more tolerable 16 seconds, more
than 6 times faster. In fact, AFS takes 16 seconds to run
the benchmark on a LAN, though CIFS takes only 6 sec-
onds. The gcc workload took 113 seconds under LBFS with
a populated database, 1.7 times faster than Leases+Gzip, 4
times faster than AFS, almost 12 times faster than NFS,
and 18% faster than NFS on a LAN. With a new server
database, LBFS still reduces the execution time by 6% over
Leases+Gzip, though it is 32% slower than NFS on a LAN.

For both the MSWord and gcc workloads, Figure 7b shows
that LBFS reduces network utilization, or the percentage of
available bandwidth used by the file system. Over LBFS,
gcc used only used only 9.5% of the 384 Kbit per second up-
stream link. In contrast, gcc under NFS used 68% and under
AFS used 96%. For the MSWord benchmarks, LBFS was
able to reduce the upstream network utilization from 87%
and 96% with AFS and CIFS to 29%.

Figure 8 examines the effects of available network band-
width on the performance of the gcc workload over LBFS,
Leases+Gzip, and AFS. In these experiments, the simulated
network has a fixed round trip time of 10 ms. This graph
shows that LBFS is least affected by a reduction in avail-
able network bandwidth, because LBFS reduces the read and

Summary

•LBFS breaks files into chunks based on
contents

•LBFS indexes file chunks by their hash
values

•LBFS saves bandwidth by taking advantage
of commonality between files

Summary

•LBFS can consume over an order of
magnitude less bandwidth than traditional file
systems

•LBFS makes transparent remote file access
a viable and less frustrating alternative

