
A Comparison of Software and
Hardware Techniques for x86

Virtualization
Keith Adams and Ole Agesen

VMware

ASPLOS 2006

Presenter: Daiping Liu

Roadmap

Overview
Classical Virtualization
Software Virtualization
Hardware Virtualization
Evaluation
Conclusion

Virtualization is Everywhere

Virtualization in a Nutshell

Roadmap

Overview
Classical Virtualization
Software Virtualization
Hardware Virtualization
Evaluation
Conclusion

Popek & Goldberg Theorem

Fidelity: Behave identically in guest OS and host OS
Safety: VMM manages all hardware resources
Performance: No VMM intervention for dominant
number of instructions

An effective VMM may be
constructed if the set of sensitive
instructions for that computer is a
subset of privileged instructions.

trap-and-emulate virtualization

De-privileging

Privileged: Trap-in-user-mode; No-trap-in-kernel-mode
Control sensitive: Change the config of resources
Behavior sensitive: Depend on the config of resources

De-privileging

Shadow Structures

On-CPU privileged state: A set of registers
 Maintain an image of registers
 Emulate as operations trap

Off-CPU privileged data: page tables, MMIO devices
 Access without trapping instructions (coherency lost)
 Memory traces

VMM provides an execution environment for guest OS
and maintains shadow structures for privileged data.

Memory Traces

Use hardware page protection (tracing) to trap accesses
to in-memory primary structures.
 Guest PTEs with shadow PTEs are write-protected
 MMIO devices must be read/write protected

1) Decode the faulting guest instruction;
2) Emulate its effect in the primary structure;
3) Propagate the change to the shadow structure.

Shadow Page Tables

Refinements

Exploit VMM/Guest OS interface: Make guest OS
provide higher-level information to VMM
 Improved performance
 Violate Fidelity

Exploit hardware/VMM interface: Make hardware
understand VMM
 Interpretive execution: Encode guest privileged state
in hardware-defined format and execute in interpretive
execution mode
 Reduced the frequency of traps

Roadmap

Overview
Classical Virtualization
Software Virtualization
Hardware Virtualization
Evaluation
Conclusion

x86 obstacles

Visibility of privileged state: Guest OS can observe that
it’s de-privileged by reading CPL of %cs.
Lack of traps for privileged instructions: Violate Popek-
Goldberg’s Theorem
 popf may change ZF and IF in privileged code; In de-
privileged code, hardware simply suppresses attempts
to modify IF without generating traps.

Binary Translation

Simple Binary Translation

Interpreter separates virtual state (VCPU) from physical
state (CPU) through maintaining the complete state of the
machine (registers / memory)
 Overcomes semantic obstacles: prevent leakage
of privileged state from physical CPU into guest;
emulate non-trapping instructions correctly
 Performance bottleneck: Fetch-decode-execute
cycle of the interpreter may generate hundreds of
physical instructions per guest instruction.

Interpreter Example

Reference: Virtual Machines: Versatile Platforms for Systems and Processes

Dynamic Binary Translation

Binary: Input is x86 binary code
Dynamic: Translation happens at runtime
Subsetting: Output is a safe subset (mostly user-mode
instructions) of the full x86 instructions set
On demand: Code is translated only when it is about to
execute
System level: Make no assumptions about the guest code.
Adaptive: Translated code is adjusted in response to
guest behavior changes to improve overall efficiency

An example

Translation Unit

Translation unit: 12 instructions or a terminating
instruction
TU Compiled code fragment (CCF)

Translator-invoking Continuations: translation does not
preserve original code layout
Chaining optimization: allow one CCF to jump directly to
another OR fall through directly

Chaining

Predecessor

No need to locate the generated block for Successor
Indirect jump? jmp/call %eax, jmp/call *0xdeadbeef

Successor…

call Suc

…

…

…

Predecessor
…

call Suc

…
…

Suc’

…

Translation Cache

…

…

Suc’

Predecessor

Suc’…

jmp Suc’

…

…

…

TU to CCF

TUs CCFs

Memory Access & Virtual
Registers

Segmentation (%gs): Efficient and safe memory access in
guest OS

 VMM mapped in high part of the guest’s address space

 All segment registers but %gs hold truncated segments

Translator inserts %gs prefix to gain access to VMM

 Non-IDENT translation if guest inst uses %gs prefix

Non-IDENT Translations

Most instructions can be translated IDENT, except:

 PC-relative address: small code expansion and slowdown

 Direct control flow: insignificant slowdown

 Indirect control flow: dynamic lookup

 Privileged instructions: it depends
• May be faster than native: 60-cycle cli v.s. vcpu.flags.IF:=0

• Or measurable overhead due to the callout and the emulation

Adaptive Binary Translation

BT eliminates traps from privileged instructions and outperforms
classical VMMs

rdtsc on Pentium 4 CPU
Trap-and-emulate 2030 cycles

Callout-and-emulate 1254 cycles
In-TC emulation 216 cycles

Innocent until proven guilty for non-privileged instructions
accessing sensitive data: Start in the innocent state and detect
instructions that trap frequently

 Retranslate non-IDENT to avoid the trap

 Patch the original IDENT translation with a forwarding
jump to the new translation

Adaptive Binary Translation

Adaption takes constant time due to a forwarding jump

After adaption, we avoid taking a trap in ccf1 and instead
execute a faster callout in ccf5

Remove forwarding jump from ccf1 if the offending instruction
becomes innocent again

Roadmap

Overview
Classical Virtualization
Software Virtualization
Hardware Virtualization
Evaluation
Conclusion

Intel VT-x

Intel VT-x defines processor-level support for VMMs on x86, in
the form of Virtual-Machine eXtentions (VMX) operation

 VMX root operation for VMM

 VMX non-root operation for guest software

 VMX transitions: root (VM exits) <-> non-root (VM entries)

Reference: Intel® 64 and IA-32 Architectures Software Developer’s Manual 3C

VMX enables guest software to run at the privilege level for
which it was originally designed, even CPL 0.

Virtual-Machine Control
Structure

VMX non-root operation and VMX transitions are controlled by a
data structure Virtual-Machine Control Structure (VMCS)

 In-memory data structure pointed by VMCS Pointer
 VMX exit information, CPU state and control data

 Each VMCS for each virtual processor

Reference: Intel® 64 and IA-32 Architectures Software Developer’s Manual 3C

Example: Process Creation

Guest OS creates a process using fork()

 fork() invoked: CPL transition happens w/o VMM
intervention

 COW in guest OS for both parent and child address space

 Guest OS schedules the child process: exit and VMM
constructs a new shadow page table

 Hidden page fault exit: the child process touches memory
that is not yet mapped in shadow page table

 True page fault exit: paging protection constraints

Performance

Reducing the frequency of exits is the most important
optimization for classical VMMs

Privileged instructions affect state within the virtual CPU as
represented within the VMCS rather than unconditionally
trapping

Roadmap

Overview
Classical Virtualization
Software Virtualization
Hardware Virtualization
Evaluation
Conclusion

Qualitative Comparison

BT wins in areas:
 Trap elimination
 Emulation speed
 Callout avoidance

Hardware VMM wins in areas:
 Code density
 Precise exceptions
 System calls

Quantitative Comparison

Vmware Player 1.0.1: software and hardware-assisted VMMs

HP xw4300 workstation: VT-enabled 3.8 GHz Intel P 4 672

Guest OS
 RedHat Enterprise Linux 3

Windows 2003 Enterprise x64 Edition
Test cases:

 Macrobenchmarks: SPECint 2000, SPECjbb 2005,
Apache, compile, 2D Graphics, and PassMark

 Microbenchmarks: Forkwait

 Nanobenchmarks: syscall, in/out, callret, pgfault, …

MacroBenchmarks

 Both VMMs run to score
close to native
 mcf runs faster than
native on both VMMs
 SPECjbb performs even
closer to native

MacroBenchmarks

Apache: All four tests
compare poorly to native

Compile/PassMark:
software VMM outperforms
hardware VMM

2DGraphics: hardware
VMM outperforms software
VMM

Process
based

Thread
based

Cygwin makes
it slow

MicroBenchmarks

 system calls
 context switching
 creation of address spaces
 modification of traced page
table entries
 injection of page faultsforkwait

Native 6.0s
Software VMM 36.9s
Hardware VMM 106.4s

NanoBenchmarks

 syscall, call/ret, divzero:
Native = Hardware >Software

 in, cr8wr:
Software > Native >Hardware

pgfault, ptemod:
Native > Software >Hardware

Future Opportunities

Hardware overheads will shrink over time
A more potent approach is to eliminate exits entirely
A hybrid VMM
Hardware MMU support
 Intel’s Extended Page Tables (EPT)

 AMD’s Nested Paging Tables

Reference: www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf

Roadmap

Overview
Classical Virtualization
Software Virtualization
Hardware Virtualization
Evaluation
Conclusion

Conclusion

 Both VMMs perform well on compute-bound
workloads
 Software outperforms hardware for workloads that
perform I/O, create processes, or switch contexts rapidly
 Hardware outperforms for workloads with system calls
While hardware VMM simplifies VMM design, it rarely
improves performance
 MMU is the bottleneck for hardware VMM

Software v.s. Hardware VMM

	幻灯片编号 1
	幻灯片编号 2
	Virtualization is Everywhere
	Virtualization in a Nutshell
	幻灯片编号 5
	Popek & Goldberg Theorem
	De-privileging
	Shadow Structures
	Memory Traces
	Refinements
	幻灯片编号 11
	x86 obstacles
	Simple Binary Translation
	Interpreter Example
	Dynamic Binary Translation
	An example
	Translation Unit
	Chaining
	TU to CCF
	Memory Access & Virtual Registers
	Non-IDENT Translations
	Adaptive Binary Translation
	Adaptive Binary Translation
	幻灯片编号 24
	Intel VT-x
	Virtual-Machine Control Structure
	Example: Process Creation
	Performance
	幻灯片编号 29
	Qualitative Comparison
	Quantitative Comparison
	MacroBenchmarks
	MacroBenchmarks
	MicroBenchmarks
	NanoBenchmarks
	Future Opportunities
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39

