
SecVisor: A Tiny Hypervisor to Provide 
Lifetime Kernel Code Integrity for 

Commodity OSes
A. Seshadri, M. Luk, N. Qu, A. Perrig

Presenter: Evan Moritz



The Problem of Security

● Kernels run at privileged level

● Attacks can modify kernel code

● Need a way to ensure code integrity



Solution

● Control kernel execution privileges

● Control memory accesses

● Virtualize physical memory
○ CPU Memory Management Unit (MMU)
○ I/O MMU





Threat Model

● Attackers control everything except:
○ CPU
○ Memory controller
○ Physical memory

● Attacker may be aware of kernel 
vulnerabilities

● CPU System Management Mode (SMM)
is not malicious



x86 Memory Protections

● Segmentation privilege levels

● Page table protections
○ Page access permissions



x86 Control Transfer Events

● Ring transfer originates at lower privilege 
level

● CPU ensures jmp and call access permitted 
entry points

● CPU controls sysenter and syscall through 
Model Specific Registers (MSR)



AMD Secure Virtual Machine (SVM)

● Virtual Machine Control Block (VMCB)

● VMCB intercepts

● TLB entry tagging

● Device Exclusion Vector (DEV)

● Nested Page Tables (NPT)

● Late launch





SecVisor

● Tiny hypervisor ensures only approved code 
runs at a privileged level

● Uses AMD SVM to virtualize physical 
memory, CPU MMU, I/O MMU

● Controls kernel and user mode switches



Hardware memory virtualization

● AMD SVM nested page table (NPT)
○ More restrictive access permissions
○ SecVisor allocates physical pages to NPT
○ Sole access to NPT

● W⊕X protections
○ User mode: kernel pages are not executable
○ Kernel mode: pages are X or W, but never both
○ Violations terminate OS immediately

● Maintain two NPTs

● Eliminates need to intercept MMU state





Software memory virtualization

● Shadow page table (SPT)

● W⊕X protections

● Single SPT shared by kernel and user

● Intercept MMU register writes





Device Exclusion Vector virtualization

● Controls vector by allocating its own memory

● I/O intercept handler blocks writes to DEV

● I/O handler performs writes to PCI on behalf 
of guest code



Requirements for approved code

1. Kernel entries should set Instruction Pointer (IP) to 
approved code

2. IP should point to approved code until kernel exit

3. Kernel exits should set privilege level to user mode

4. Approved code should only be modified by SecVisor



Kernel entries and exits

● Maintain shadow copies of entry points
○ Global Descriptor Table
○ Local Descriptor Table
○ Interrupt Descriptor Table
○ Model Specific Registers

● Kernel exits trigger protection exception
○ Set protection level to 3 (user mode)



Porting Linux

● Modify boot sequence to call SecVisor 
before kernel execution
○ Perform verification of kernel
○ Set permissions and CPU state

● Approve dynamically loaded modules
○ SecVisor performs load_module and free_module
○ Checks module against approval policy
○ Performs relocation and write



Evaluation - Design Requirements

● Code size
○ 6526 lines of C / asm

● Kernel interface
○ 2 hypercalls

● OS portability
○ Linux - 12 lines added, 81 deleted



Evaluation - lmbench
Host Null Call Fork Exec Prot Fault PF

Linux (UP) 0.10 139 410 0.248 1.71

Xen (UP) 0.17 415 1047 0.565 3.71

SecVisor 25.6 2274 6203 27.3 35.1

Table 2: Execution times of lmbench process and memory microbenchmarks (μsec).

Source Null Call Fork Exec Prot Fault PF

SPT 0.10 1275 3043 2.289 14.6

SPT + perm 21.8 2148 5816 22.5 32.9

Table 3: Split of SecVisor overhead in lmbench (μsec).

Host 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K

Linux (UP) 0.56 0.64 3.19 1.48 12.9

Xen (UP) 2.61 2.42 5.16 4.07 17.1

SecVisor 54.3 52.7 53.6 63.3 75.8

Table 4: Execution times of lmbench context switch microbenchmarks (μsec).



Evaluation - SPECint 2006

Figure 11: SPECint 2006 performance comparison between SecVisor and Xen
(normalized to Linux)



Evaluation - I/O bound applications

Figure 12: Application performance comparison between SecVisor and Xen
(normalized to Linux)



Extensions

● Multi-CPU support

● System Management Interrupts (SMI)

● Self-modifying code

● Porting to Intel Trusted Executable
Technology (TXT)

● Porting Windows XP

● Protecting user applications

● Kernel code attestation



Questions / comments?

● Security evaluation?

● Performance

● Figure 1 and 5 discrepancy


