
MapReduce: Simplified Data Processing on Large
Clusters

Jeffrey Dean, Sanjay Ghemawat

Presented by: Kevin Ji



Introduction: Large Scale Data Processing

Many tasks: Process lots of data to produce other data
Example: 20+ billion webpages ×20KB = 400+ terabytes

I one computer can read 30− 35 MB/sec from disk

I ∼ 4 months to read the web

Solution: Distribute the work over thousands of machines
Problem: Programming Complexity

I Communication and coordination

I Recovering from machine failure

I Status reporting

I Debugging

I Optimization

I Locality

Must solve these problems for every new problem



MapReduce

A simple programming model that enables automatic
parallelization and distribution of large-scale computations

I Specific implementation of the interface for commodity
computing clusters

Hide messy details in MapReduce runtime library:

I Automatic parallelization

I Fault-tolerance

I Load balancing

I Data distribution



Programming Model

Input: A set of input key/value pairs
Output: A set of output key/value pairs
Programmer expresses computation as Map and Reduce functions
map(k , v)→ list(〈k ′, v ′〉)

I Extract something you care about from each record

I Processes input key/value pair

I Produces set of intermediate key/value pairs

Shuffle and Sort

I MapReduce library groups intermediate values according to
intermediate key and passes them to the Reduce function

reduce(k ′, list(v ′))→ list(v ′)

I Aggregate, summarize, filter, or transform related values

I Combines all intermediate values for a particular key

I Produces a set of merged output values



Example: Counting Word Occurrences

Pseudocode:

map(String key , String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key , Iterator values ):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result ));

The map function emits each word with a count of 1
The reduce function sums together all counts for a particular word



More Examples

Distributed Grep:

I Map: Emits a line if it matches a supplied pattern

I Reduce: Identity function

Count of URL Access Frequency:

I Map: Processes logs of page requests and outputs <URL, 1>

I Reduce: Sums together all values for the same URL and emits
<URL, total_count>

Reverse Web-Link Graph:

I Map: Outputs <target, source> pairs for each link to
target from source

I Reduce: Concatenates the list of source URLs for a particular
target URL and emits <target, list(source)>



More Examples

Term-Vector per Host:

I Map: Emits <hostname, term_vector> pair for each input
document

I Reduce: Sums all term vectors for a given host, discards
infrequent terms, and emits <hostname, term_vector>

Inverted Index:

I Map: Emits <word, document_ID> pairs

I Reduce: Sorts all document IDs and emits
<word, list(document_ID)> pairs

Distributed Sort:

I Map: Emits <key, record> pair for each record

I Reduce: Emits all pairs unchanged



Implementation

Computing Clusters

I Thousands of computers connected by switched Ethernet
I Commodity networking hardware

I 100 megabits/second or 1 gigabit/second at machine level
I Averaging substantially less in overall bisection bandwidth

I Users submit jobs to a scheduling system

Machines

I 2 CPUs: typically hyperthreaded or dual-core

I Several locally-attached disks

I 4GB-16GB of RAM
I Typical machine runs:

I Google File System (GFS)
I Scheduler daemon for starting user tasks
I User tasks



Execution Overview
One master, many workers

I Input data divided into M splits (typically 64 MB in size),
each one corresponds to a map task

I Reduce phase partitioned into R reduce tasks
I Partition function over intermediate key space

I Tasks are assigned to workers dynamically

I Often: M = 200000, R = 4000, workers=2000

Master assigns each map task to a free worker

I Considers locality of data to worker when assigning task

I Worker reads the corresponding input (often from local disk)

I Worker produces R local files containing intermediate
key/value pairs

Master assigns each reduce task to a free worker

I Worker reads intermediate key/value pairs from map workers

I Worker sorts and applies Reduce to produce the output



Execution Overview



Master Data Structures

For each map and reduce task

I State: idle, in-progress, completed

I Identity of the worker machine for non-idle tasks

Locations and sizes of the intermediate file regions



Fault Tolerance: Handled via Re-execution

On worker failure:

I Detect failure via periodic ping

I Re-execute completed and in-progress map tasks

I Re-execute in-progress reduce tasks

I Task completion committed through master

On Master failure:

I Abort computation

I Could have master write checkpoints to GFS and have new
master recover from checkpoint



Semantics in the Presence of Failures

Deterministic map and reduce operators

I Equivalent output as sequential execution
I Rely on atomic commits of map and reduce task outputs

I Private temporary output files
I Map tasks notify master of these files on completion
I Reduce tasks atomically rename temp to final output file

I Rely on atomic rename operation from GFS
I Multiple instances of the same reduce task produce multiple

rename calls for the same final output file.

Non-Deterministic map and reduce operators

I Output for a particular reduce task R1 is equivalent to the
output for R1 produced by some sequential execution

I Output for another reduce task R2 may correspond to the
output for R2 produced by a different sequential execution



Locality

Problem: Network bandwidth is scarce
Solution: Master Scheduling Policy

I Asks GFS for locations of replicas of input file blocks

I Map tasks typically split into 64MB (GFS block size)

I Map tasks scheduled so GFS input block replica are on same
machine or network switch

Effect: Most input data is read from local disk



Task Granularity

Fine granularity tasks: many more map tasks than machines

I Minimizes time for fault recovery

I Better dynamic load balancing

Practical bounds on M and R

I O(M + R) scheduling decisions

I O(M · R) state in memory

I R separate output files

Typically choose M so each individual task is 16MB to 64MB of
input data, and R a small multiple of the expected number of
worker machines to be used

I Often use M = 200000, R = 5000, with 2000 machines



Backup Tasks

Problem: Slow workers significantly lengthen completion time

I Other jobs consuming resources on machine

I Bad disks with soft errors transfer data very slowly

I Weird things: processor caches disabled...

Solution: Near end of MapReduce operation, spawn backup copies
of tasks

I Whichever one finishes first wins

Effect: Dramatically shortens job completion time



Refinements

Partitioning Function

I Allows reduce operations on different keys to be parallelized
I By default, a simple hash function modulo R

I e.g. hash(key) mod R

I Users may specify custom partition functions:
I e.g. hash(Hostname(urlkey)) mod R

Ordering Guarantees

I Within a given partition the intermediate key/value pairs are
processed in increasing key order

Combiner Function

I Can run on the same machine as a mapper
I Operates locally on the output of individual mapper

I Aggregates data before passing to reducer functions



Refinements

Input and Output Types

I Input type implementations know how to split themselves
meaningfully for map tasks

I Output types for producing formatted data

Side-effects

I Programmer must themselves make side-effects (e.g. auxiliary
files) atomic and idempotent



Refinements

Skipping Bad Records

I Map/Reduce functions sometimes fail for particular records
I Not always possible to debug and fix
I On segmentation fault:

I Send UDP packet to master from signal handler
I Include sequence number of record being processed

I If master sees two failures for the same record:
I Next worker is told to skip the record

I Effect: Can work around bugs in third-party libraries

Local Execution

I Alternative implementation of MapReduce library to
sequentially execute all work locally.

I Controls to specify particular map tasks



Refinements

Status Information

I Exports status pages showing progress of computation

I Links to standard error and standard output files

I Worker failure information

Counters

I Named counter objects incremented in map and/or reduce
I Counter values from workers are propagated to master

I Piggybacked on ping response

I Master aggregates counters from successful tasks and returns
them to the user code (eliminates duplicate executions)



Performance

Tests run on cluster of 1800 machines:

I 4GB of memory

I Dual-processor 2 GHz Xeons with Hyperthreading

I Dual 160 GB IDE disks

I Gigabit Ethernet per machine

I Bisection bandwidth approximately 100 Gbps

Two benchmarks:

I Grep: Scan 1010 100-byte records to extract records matching
a rare pattern (92K matching records)

I Sort: Sort 1010 100-byte records (modeled after TeraSort
benchmark)



Grep

Large map, small reduce

I 64 MB splits, M = 15000

I Single output file, R = 1

Locality optimization helps:

I Peak transfer rate
of 30+GB/s with 1764
workers assigned

Startup overhead is significant for short jobs

I 150 seconds total
I 1 minute startup overhead

I Program propagation to worker machines
I GFS interaction



Sort

Implementation:

I Map: Extracts 10-byte sort key from a line, emits key/line pair

I Reduce: Built-in identity function

Custom partitioning function:

I Uses the initial bytes of the sort key

I Built-in knowledge of the distribution of keys

Tuning parameters:

I 64MB splits, M = 15000, R = 4000
I Final output written to 2-way replicated GFS files

I 2TB written as output



Sort

More detailed experiment:

I Custom partitioning

I Removed backup tasks

I Induced machine failures

Results:
I Normal execution:

I 891 seconds (850 excluding startup)

I No backup tasks:
I 1283 seconds

I 200 induced failures:
I 933 seconds



Sort

Normal No backups 200 processes killed



Sort
Normal

I Input rate is lower than Grep
I Time writing intermediate output to local disk

I Delay between shuffling and output because of sorting
I Input rate is higher than shuffle and output rates

I Locality optimization

I Shuffle rate is higher than output rate
I 2-way replicated GFS files

No Backups
I Increased computation time

I All but 5 tasks finish by 960 seconds
I 5 stragglers add 300 seconds
I 44% increase: 1283 seconds

Induced Failures

I Killed 200 of 1800 workers

I Re-execution begins immediately

I Only 5% total time increase



Experience

Rewrite of Production Indexing

I 5− 10 MapReduce operations for 20+ terabytes of data

I New code is simpler, easier to understand

I MapReduce handles failures, slow machines

I Easy to improve performance by adding more machines

Broad applications



Related Work

I Programming model inspired by functional programming
I Partitioning/shuffling similar to many large-scale sorting

systems
I NOW-Sort [1]

I Re-execution for fault tolerance and locality-aware scheduling
I BAD-FS [5] and TACC [7]

I Locality optimization has parallels with Active Disks
I Active Disks [12, 15]

I Backup tasks similar to Eager Scheduling in Charlotte system
I Charlotte [3]

I Dynamic load balancing solves similar problems as River’s
distributed queues

I River [2]

I Cluster management system is similar to Condor
I Condor [16]



Conclusions

I MapReduce has proven to be a useful abstraction

I Greatly simplifies large-scale computations

I Restricted programming model can make fault-tolerant
parallelization easy

I Network bandwidth is scarce

I Redundant execution can help provide fault-tolerance


