
ALTERA INSTALLATION
CSE 141L – UC San Diego

January 22, 2013

Introduction

 Fortunately most of you have already used

Altera in CSE 140L, so things will largely be

the same for you.

 If you haven’t, its basically an IDE for

hardware design

 At least B250 and B260 have Altera installed,

but the labs are very crowded this quarter so

you may want to install it yourself as well.

Altera Installation

 Step 1: Go to
https://www.altera.com/download/software/qua
rtus-ii-we/11.0

 Step 2: Select whatever version you choose
(We will support the Windows version since
that is what is on the machines in the lab, but
there are Linux installs available as well.

 Step 3: Option 1 requires Java, if this is not to
your liking (I wouldn’t blame you given recent
events), you can download the file directly.

https://www.altera.com/download/software/quartus-ii-we/11.0
https://www.altera.com/download/software/quartus-ii-we/11.0
https://www.altera.com/download/software/quartus-ii-we/11.0
https://www.altera.com/download/software/quartus-ii-we/11.0
https://www.altera.com/download/software/quartus-ii-we/11.0
https://www.altera.com/download/software/quartus-ii-we/11.0
https://www.altera.com/download/software/quartus-ii-we/11.0

Altera Installation

1

2

3

Altera Installation

 Step 4: When asked to create an account, you

can just choose the “One-Time Access” option,

using an email and “UCSD” for the business.

 Step 5: IF you did step 3 and downloaded the file

directly, you may also need to download Modelsim

separately. You can find Modelsim here:

https://www.altera.com/download/software/models

im-starter/11.0

 Download the stock 11.0 version first, use sp1 only if

there are problems.

https://www.altera.com/download/software/modelsim-starter/11.0
https://www.altera.com/download/software/modelsim-starter/11.0
https://www.altera.com/download/software/modelsim-starter/11.0
https://www.altera.com/download/software/modelsim-starter/11.0
https://www.altera.com/download/software/modelsim-starter/11.0

Altera Installation

 Step 6: Once the process to create your account
is done, you can sign in to install the file.

 Step 7: Downloading a 2.7 GB takes time…try
downloading on campus. Grab a coffee.

 Kidding aside, this highlights another issue with
Altera, installation takes time, do it asap.

 Step 8: If you used the download manager you
should have Altera auto-install for Quartus II Web
Edition and Modelsim-Altera Starter Edition

 There are paid versions of this, make sure to get the
free ones.

Altera Installation

 Step 8b: If you downloaded manually make sure you
have these two programs and ensure that the Cyclone
and Stratix FPGA libraries are installed as well.

 Step 9: Once you begin the installation…you can
safely step away.
 You can probably cook a nice dinner, this can take well

more than an hour to install fully.

 As such this is another reminder to install this ASAP, the
basement labs appear swamped this quarter so space is at
a premium.

 Step 10: You do not need a license, so if something
pops up asking for one ignore it.

 Step 11: Fin!

ALTERA/VERILOG

TUTORIAL
CSE 141L – UC San Diego

January 22, 2013

Altera Tutorial

 This tutorial is adapted from the CSE 141L Lab
1 from Summer 2012 (available here:
http://cseweb.ucsd.edu/classes/su12/cse141L-
a/lab1.html).

 It will show how to set up a project, write a
couple Verilog files, then test them.

 It is NOT designed to show you how to do your
lab, as such the ALU is very simple, but it may
give you ideas on how to implement your
project.

Altera Tutorial

 Some additional (and more detailed) tutorials

can be found on Piazza.

One covers how to set up a project in Altera

 The other covers how to do simulations using

ModelSim

 Even further help can be found here:

https://sites.google.com/a/eng.ucsd.edu/using-

the-altera-tools/

https://sites.google.com/a/eng.ucsd.edu/using-the-altera-tools/
https://sites.google.com/a/eng.ucsd.edu/using-the-altera-tools/
https://sites.google.com/a/eng.ucsd.edu/using-the-altera-tools/
https://sites.google.com/a/eng.ucsd.edu/using-the-altera-tools/
https://sites.google.com/a/eng.ucsd.edu/using-the-altera-tools/
https://sites.google.com/a/eng.ucsd.edu/using-the-altera-tools/
https://sites.google.com/a/eng.ucsd.edu/using-the-altera-tools/
https://sites.google.com/a/eng.ucsd.edu/using-the-altera-tools/

Altera Tutorial

 Step 1: With Altera open, go to File -> New Project
Wizard…

 Step 2: Type the name of the project and the
directory you want to place it in. Click next to pass
step 2.

 Step 3: When you reach Step 3: Select the Cyclone
II family and the EP2C35F672C6 chip.

 Step 4: For “Simulation”: Click the tool name drop
box and select “Modelsim-Altera”, for the format:
“Verilog HDL”

 Step 5: Verify that you did the above on the
Summary screen.

Altera Tutorial

Altera Tutorial

 Sidebar: What the is a Cyclone II

EP2C35F672C6?

 Short answer: It is an FPGA designed by Altera that

allows you to translate your schematic/verilog onto

an actual chip.

Altera Tutorial

 Sidebar: What is a Cyclone II EP2C35F672C6?

We will not be actually doing putting your design on-

chip, but other classes have attempted it, and some

of you have experience in CSE 140L. We would like

you to use the package denoted in Lab 2 for your

testing.

 The reason we want this is because, if you are

arguing area or speed of the processor, the chip

matters. If you are arguing something like cycle

count, then this is less of a concern.

Altera Tutorial

 Step 6: Go to File->

New… and select

Verilog HDL File to

start coding up

components. Be

sure to save your

files in the same

directory as your

project.

Altera Tutorial

 Step 7: Insert the following

code:

`timescale 1ns / 1ps

module Tutorial#(parameter W = 8)

(

 input clk,

 input [W-1:0] inA, inB,

 output [W:0] out,

 output isOdd

);

reg [W-1:0] regA, regB;

reg [W:0] regOut;

reg regOdd;

wire [W:0] wireOut;

assign wireOut = regA + regB;

assign out = regOut;

assign isOdd = regOdd;

always@(posedge clk)

begin

 regA <= inA;

 regB <= inB;

 regOut <= wireOut;

 regOdd <= (out[0] == 1) ? 1: 0;

end

endmodule

Altera Tutorial

 Step 8: Now its time to check to make sure

everything is syntactically correct. Go to the tasks

tab, and double click on “Analysis & Synthesis”.

This will compile the code and show you any

errors that may crop up in compilation.

 Step 9: If you want to see how things look at the

RTL level, go to the hierarchy tab, right click your

base module (in this case: Tutorial), go to Locate,

and select “Locate in RTL Viewer”

Altera Tutorial

Altera Tutorial

Altera Tutorial

 Step 10: Repeat steps 6-8 for any other modules

you wish to create. While we don’t show it here,

eventually you will have to wire up all your

modules either using a schematic viewer or in

verilog.

 Step 11: To see how it will work in simulation, we

need to use modelsim. Open Modelsim up.

 Step 12: Go to File -> New… -> Library. Create a

new library with the radio button “a new library

and a logical mapping to it” selected.

Altera Tutorial

Altera Tutorial

 Step 13: Create a file called “test_tutorial.v”, to

set up the testbench (see next slide)

 Step 14: Go to compile->compile. Select

BOTH the Tutorial.v and test_tutorial.v files to

compute.

 Step 15: Go to your work library and double

click “test_tutorial.v”

 Step 16: Go to the top bar, change 100ps to

100ns, DO NOT hit run yet.

Altera Tutorial

`timescale 1ns / 1ps

module test_tutorial#(parameter W = 8);

 reg clk;

 reg [W-1:0] a_r;

 reg [W-1:0] b_r;

 wire [W:0] sum;

 wire is_odd;

 // The design under test is our adder

 Tutorial dut (.clk(clk)

 ,.inA(a_r)

 ,.inB(b_r)

 ,.out(sum)

 ,.isOdd(is_odd)

);

 // Toggle the clock every 10 ns

 initial

 begin

 clk = 0;

 forever #10 clk = !clk;

 end

// Test with a variety of inputs.

 // Introduce new stimulus on the falling clock edge so that
values

 // will be on the input wires in plenty of time to be read by

 // registers on the subsequent rising clock edge.

 initial

 begin

 a_r = 0;

 b_r = 0;

 @(negedge clk);

 a_r = 1;

 b_r = 1;

 @(negedge clk);

 a_r = 5;

 b_r = 6;

 @(negedge clk);

 a_r = 2;

 b_r = 2;

 @(negedge clk);

 a_r = 3;

 b_r = 3;

 @(negedge clk);

 a_r = 1;

 b_r = 8;

 end // initial begin

endmodule // test_adder

Altera Tutorial

Altera Tutorial

 Step 17: To see the waveform, right click “dut”, go
to Add -> To Wave -> All items in region

 Step 18: Now hit run. Right click the waveform
and select “Zoom Full” (or press F).

 Step 19: If you did everything properly, the
waveform should be displayed as shown here.

 Step 20: Note that the adder has a delay between
the input and the correct output. This was by
design. Be careful when coding in verilog not to
have too many registers in your modules as this
can slow down your processor.

Altera Tutorial

QUESTIONS?

