Architectural
Patterns and Styles

Software Architecture
Lecture 4

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Software Architecture: Foundations, Theory, and Practice :

Learning Objectives

e Delineate the role of Styles and Patterns in Software
architecture

e Understand the role and benefits of architectural styles
e Understand and apply common styles in your designs

e Construct complex styles from simpler styles

Software Architecture: Foundations, Theory, and Practice

Patterns, Styles, and DSSAs

A
Deep
Domain-specific
s/w archs.
£ Architectura
©
£ o patterns
o
g
3
g2
O
o
Q.
<
(Program)
Design
patterns
Shallow
>
Scope
SEN 2y &
IS o & 5
& A N $)
& & S N
L S o &
S & NS %
o’ s § IS
A £ G o
o § @ &
NS 9 X
& 2 %)
N
NS
LK
§
N

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pra;g.j

The Lunar Lander: A Long-Running
Example

e A simple computer game that first appeared in the
1960's

e Simple concept:

You (the pilot) control the descent rate of the
Apollo-era Lunar Lander

e Throttle setting controls descent engine
e Limited fuel
e Initial altitude and speed preset

e If you land with a descent rate of < 5 fps: you
win (whether there’s fuel left or not)

“Advanced” version: joystick controls attitude &
horizontal motion

Software Architecture: Foundations, Theory, and Pra;g.j

Architectural Styles: Definition

e An architectural style is a named collection of architectural
design decisions that

e are applicable in a given development context

e constrain architectural design decisions that are specific
to a particular system within that context

e clicit beneficial qualities in each resulting system

e A primary way of characterizing lessons from experience in
software system design

e Reflect less domain specificity than architectural patterns

e Useful in determining everything from subroutine structure to
top-level application structure

Software Architecture: Foundations, Theory, and Practi:

Basic Properties of Styles

e A vocabulary of design elements
Component and connector types; data elements
e.g., pipes, filters, objects, servers

e A set of configuration rules

Topological constraints that determine allowed
compositions of elements

e.g., a component may be connected to at most two other |
components

e A semantic interpretation

Compositions of design elements have well-defined
meanings

e Possible analyses of systems built in a style

Software Architecture: Foundations, Theory, and Practicr

Benefits of Using Styles

e Design reuse
Well-understood solutions applied to new problems
e Code reuse
Shared implementations of invariant aspects of a style
e Understandability of system organization
A phrase such as “client-server” conveys a lot of information
e Interoperability
Supported by style standardization
e Style-specific analyses
Enabled by the constrained design space
e Visualizations
Style-specific depictions matching engineers’ mental models

Software Architecture: Foundations, Theory, and Practi

Style Analysis Dimensions

e What is the design vocabulary?

Component and connector types

nat are the allowable structural patterns?

nat is the underlying computational model?
nat are the essential invariants of the style?
nat are common examples of its use?

nat are the (dis)advantages of using the style?
hat are the style’s specializations?

=S === =

Software Architecture: Foundations, Theory, and Practice :

Learning Objectives

e Delineate the role of Styles and Patterns in Software
architecture

e Understand the role and benefits of architectural styles
e Understand and apply common styles in your designs

e Construct complex styles from simpler styles

E

Software Architecture: Foundations, Theory, and Practice

Some Common Styles

e Traditional, language-
influenced styles

Main program and
subroutines

Object-oriented
e Layered
Virtual machines
Client-server
e Data-flow styles
Batch sequential

Pipe and filter
e Shared memory

Blackboard
Rule based

e Interpreter
Interpreter
Mobile code

e Implicit invocation
Event-based

Publish-subscribe

e Peer-to-peer

e Distributed Objects
C2
CORBA

10

Software Architecture: Foundations, Theory, and Practice

Main Program and Subroutines LL

Lunar Lander
Main Program

1AM} = =
Procedure Call Procedure Call Procedure Call
! ' !
in: none in: altitude, throttle, in: aftitude, fuel,
out: throttle fuel, time, velocity, time, velocty
out : altitude, fuel, velocity out: none
Get BurnRate En_/ironment Display values to
from user Simulator user

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pract a

Object-Oriented Style

e Components are objects
Data and associated operations
e Connectors are messages and method invocations
. e Style invariants
Objects are responsible for their internal representation
integrity
Internal representation is hidden from other objects
e Advantages
“Infinite malleability” of object internals
System decomposition into sets of interacting agents
e Disadvantages
Objects must know identities of servers
Side effects in object method invocations

Software Architecture: Foundations, Theory, and Practice

Object-Oriented LL

GUI - Get/Display

Info
= = =
Procedure Call Procedure Call Procedure Call
1 1 ™1
"CALCULATE"
"GET" a,f t v "SET" a, f t, v in: br, SpaceCraft

out: SpaceCratft

Environment

SpaceCratt Simulation

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

OO/LL in UML

GUI

getBurnRate() : void, float
displayStatus(a : float,f: floatt: intv : float)

1 1
uses
reates
1.7 1
Spacecraft Environment Simulation

a:float
f:float
t:int
v:float calculateStatus(br : ints: Spacecraft) : Spacecraft
set a(altitude : float) : void

set fifuel : float) : void
setfitime @ int) : void

set wivelocity : float) : void
get a() : float
get () : float

gett):int

getw() : float

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practic

Layered Style

Hierarchical system organization
“Multi-level client-server”

Each layer exposes an interface (API) to be used by
above layers

Each layer acts as a
Server: service provider to layers “above”
Client: service consumer of layer(s) “below”

Connectors are protocols of layer interaction
Example: operating systems
Virtual machine style results from fully opaque layers

Software Architecture: Foundations, Theory, and Practice

Layered Style (cont’'d)

e Advantages
Increasing abstraction levels
Evolvability

Changes in a layer affect at most the adjacent two
layers

e Reuse

Different implementations of layer are allowed as long
as interface is preserved

Standardized layer interfaces for libraries and
frameworks

E

Software Architecture: Foundations, Theory, and Practice

Layered Style (cont’'d)

e Disadvantages
Not universally applicable
Performance

e Layers may have to be skipped
Determining the correct abstraction level

17

Software Architecture: Foundations, Theory, and Practice

Layered Systems/Virtual Machines

Layer 1

Program A

T ————

Layer 2
Program B Program C
Layer 3

Program D

18

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Layered LL p—

%J

Procedure Call
!

I in: keyhoard input
Game Logic &

Environment
Simulator

1

}

=T

Procedure Call

in: aftitude delta

%

Generic 2D
Game Engine

TL]

Procedure Call

in: object(xy)

%ﬂ

Operating
System

TL]

Procedure Call

in: hinary data

:z:
Hardware

Display (i.e.
Graphics Card)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Client-Server Style

Components are clients and servers

Servers do not know number or identities of clients
Clients know server’s identity

Connectors are RPC-based network interaction protocols

20

Software Architecture: Foundations, Theory, and Practice

Client-Server LL

CLIENT 1 CLIENT 2 CLIENT n
Get/Display Info Get/Display Info Get/Display Info
Graphics Graphics Graphics
Processing Processing Processing

| A | =J =
Procedure Call Procedure Call Procedure Call
o | 1 o |

in: burnR ate
out: altitude, fuel, time, velocity

SERVER:
Game State
Game Logic
Environment
Simulation

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Prac :

Data-Flow Styles

Batch Sequential

Separate programs are executed in order; data is
passed as an aggregate from one program to the
next.

Connectors: “The human hand” carrying tapes
between the programs, a.k.a. “sneaker-net ”

Data Elements: Explicit, aggregate elements passed
from one component to the next upon completion of
the producing program’s execution.

e Typical uses: Transaction processing in financial
systems. “The Granddaddy of Styles”

Software Architecture: Foundations, Theory, and Practice

Batch-Sequential: A Financial
Application

_..- For tomorrow's use

Master
account
tape

Daily
transactions

Sort by account
number

Updated
master tape

Process
transactions

Print summary of
accounts

Sorted
transactions

23

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Batch-Sequential LL

Get BurnRate
from user

Compute new h,
v, t, fuel

Display h, v, t, fuel
to user

Not a recipe for a successful lunar mission

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice :

Pipe and Filter Style

e Components are filters
Transform input data streams into output data streams
Possibly incremental production of output
e Connectors are pipes
Conduits for data streams
e Style invariants
Filters are independent (no shared state)
Filter has no knowledge of up- or down-stream filters
e Examples
UNIX shell signal processing
Distributed systems parallel programming
e Example: 1s invoices | grep -e August | sort

Software Architecture: Foundations, Theory, and Practicr

Pipe and Filter (cont’'d)

e Variations
Pipelines — linear sequences of filters
Bounded pipes — limited amount of data on a pipe
Typed pipes — data strongly typed
e Advantages
System behavior is a succession of component behaviors
Filter addition, replacement, and reuse
e Possible to hook any two filters together
Certain analyses
e Throughput, latency, deadlock
Concurrent execution

26

Software Architecture: Foundations, Theory, and Practice

Pipe and Filter (cont’'d)

e Disadvantages
Batch organization of processing
Interactive applications
Lowest common denominator on data transmission

27

Software Architecture: Foundations, Theory, and Practice

Pipe and Filter LL

Get BurnRate
from user

Display new
alues to user

Compute new

Stream T

Stream

in: br

in: a, ft,v
out: none

out: none

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Blackboard Style

e Two kinds of components
Central data structure — blackboard
Components operating on the blackboard
e System control is entirely driven by the blackboard state
e Examples
Typically used for Al systems
Integrated software environments (e.g., Interlisp)
Compiler architecture

E

Software Architecture: Foundations, Theory, and Practice

Blackboard LL

Compute new
values and
Update

Enter burn rate
from user

Display values

Provides: br Obtains: a, f,t, v Obtains: a, br, f,t, v

Provides: a, f,t, v

=J
Data Access

1

)

Blackboard
Data Storage (altitude, burnRate, fuel,
time, velocity)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Rule-Based Style

Inference engine parses user input and determines
whether it is a fact/rule or a query. If it is a fact/rule, it
adds this entry to the knowledge base. Otherwise, it
queries the knowledge base for applicable rules and
attempts to resolve the query.

31

Software Architecture: Foundations, Theory, and Pra__

Rule-Based Style (cont’'d)

e Components: User interface, inference engine,
knowledge base

e Connectors: Components are tightly interconnected, with
direct procedure calls and/or shared memory.

e Data Elements: Facts and queries

e Behavior of the application can be very easily modified
through addition or deletion of rules from the knowledge
base.

e Caution: When a large number of rules are involvec
understanding the interactions between multiple rules
affected by the same facts can become very difficult.

Software Architecture: Foundations, Theory, and Practice

Rule Based LL serinerace

goal: landed(spacecraft).

-]

Procedure Call

1

in: user input, query
out: variablesresolved, T/F

[

Inference Engine

l
Data Access

—
I in: database query

out:database results

1

Knowledge Base
Facts (a, br, f, 1, v)
& Rules
landed(spacecraft) -
<= (a, 0), <(v, 3)

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pra;g.j

Interpreter Style

Interpreter parses and executes input commands,
updating the state maintained by the interpreter

e Components: Command interpreter, program/interpreter
state, user interface.

e Connectors: Typically very closely bound with direct
procedure calls and shared state.

e Highly dynamic behavior possible, where the set of
commands is dynamically modified. System architecture
may remain constant while new capabilities are created
based upon existing primitives.

e Superb for end-user programmability; supports
dynamically changing set of capabilities

e Lisp and Scheme

Software Architecture: Foundations, Theory, and Practice

Interpreter LL

Get Command
from user
(Burn, 50)

(Check Status)

=
Stream

1

in: line of code
out: result of code

in: variable updated

result of code
executed
out: none

executed
Interpret and
Execute
= =]
Data Access Data Access
1 1

Interpreter State

in: none

out: variable updated -
result of code
executed

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pra;g.j

Mobile-Code Style

e Summary: a data element (some representation of a
program) is dynamically transformed into a data
processing component.

e Components: “Execution dock”, which handles receipt of
code and state; code compiler/interpreter

e Connectors: Network protocols and elements for
packaging code and data for transmission.

e Data Elements: Representations of code as data;
program state; data

e Variants: Code-on-demand, remote evaluation, and
mobile agent.

Software Architecture: Foundations, Theory, and Practice

Mobile Code LL

Game Server
1AM =]
Stream Stream Stream
‘e I~} {}
in: game code l
out: none
Lunar Lander Ibunar '-:"dlet’ Lunar Lander
Game Applet ame Appie Game Applet

Scripting languages (i.e. JavaScript,
VBScript), ActiveX control,
embedded Word/Excel macros.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practi:

Implicit Invocation Style

e Event announcement instead of method invocation

“Listeners” register interest in and associate methods with
events

System invokes all registered methods implicitly
e Component interfaces are methods and events
e Two types of connectors

Invocation is either explicit or implicit in response to
events

e Style invariants
“Announcers” are unaware of their events’ effects
No assumption about processing in response to events

Software Architecture: Foundations, Theory, and Practic

Implicit Invocation (cont’'d)

e Advantages
Component reuse
System evolution
e Both at system construction-time & run-time
e Disadvantages
Counter-intuitive system structure

Components relinquish computation control to the
system

No knowledge of what components will respond to
event

No knowledge of order of responses

Software Architecture: Foundations, Theory, and Practice

Publish-Subscribe

Subscribers register/deregister to receive specific
messages or specific content. Publishers broadcast

messages to subscribers either synchronously or
asynchronously.

40

Software Architecture: Foundations, Theory, and Pra;g.j

Publish-Subscribe (cont’'d)

e Components: Publishers, subscribers, proxies for managing
distribution

e Connectors: Typically a network protocol is required.
Content-based subscription requires sophisticated connectors.

e Data Elements: Subscriptions, notifications, published
information

e Topology: Subscribers connect to publishers either directly or |
may receive notifications via a network protocol from
intermediaries

e Qualities yielded Highly efficient one-way dissemination of
information with very low-coupling of components

Software Architecture: Foundations, Theory, and Practice

Pub-Sub LL

Subscriber1

Subscriber 2

in: newy terrain,
spacecraft
out: none

Subscribern

=]

=J

Stream Stream

1

=J
Stream

in: register, reg info
out: none

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Game Server

42

Software Architecture: Foundations, Theory, and Pra;g.j

Event-Based Style

Independent components asynchronously emit and receive
events communicated over event buses

Components: Independent, concurrent event generators and/
or consumers

Connectors: Event buses (at least one)

Data Elements: Events — data sent as a first-class entity over
the event bus

Topology: Components communicate with the event buses,
not directly to each other.

Variants: Component communication with the event bus may
either be push or pull based.

Highly scalable, easy to evolve, effective for highly distributed
applications. 43

Software Architecture: Foundations, Theory, and Practice

Event-based LL

SpaceCraft Clock
Send: br Send: a, br, f,v Send: t (sec)
af.v
J =]

Event

Send: a, f, v Send: a, br, f,v Send: br

Game Logic

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Peer-to-Peer Style

e State and behavior are distributed among peers
which can act as either clients or servers.

e Peers: independent components, having their own
state and control thread.

e Connectors: Network protocols, often custom.
e Data Elements: Network messages

45

Software Architecture: Foundations, Theory, and Pract a

Peer-to-Peer Style (cont’'d)

e Topology: Network (may have redundant connections
between peers); can vary arbitrarily and dynamically

e Supports decentralized computing with flow of
control and resources distributed among peers.
Highly robust in the face of failure of any given node.
Scalable in terms of access to resources and
computing power. But caution on the protocol!

46

Software Architecture: Foundations, Theory, and Practice

Peer-to-Peer LL

LLG

Stream

LL3 ' mm ‘ LL1] mm ' LL2 i mm ‘ LL5

Stream

i

(LI

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice :

Learning Objectives

e Delineate the role of Styles and Patterns in Software
architecture

e Understand the role and benefits of architectural styles
e Understand and apply common styles in your designs

e Construct complex styles from simpler styles

Software Architecture: Foundations, Theory, and Practice?‘{i

Heterogeneous Styles

e More complex styles created through composition of
simpler styles
e REST (from the first lecture)
Complex history presented later in course
o C2
Implicit invocation + Layering + other constraints
e Distributed objects
OO + client-server network style

Software Architecture: Foundations, Theory, and Practice

C2 Style

An indirect invocation style in which independent
components communicate exclusively through
message routing connectors. Strict rules on

connections between components and connectors
induce layering.

50

Software Architecture: Foundations, Theory, and

C2 Style (cont’'d)

e Components: Independent, potentially concurrent
message generators and/or consumers

e Connectors: Message routers that may filter,
translate, and broadcast messages of two kinds:
notifications and requests.

e Data Elements: Messages — data sent as first-class
entities over the connectors. Notification messages
announce changes of state. Request messages
request performance of an action.

e Topology: Layers of components and connectors,
with a defined “top” and “bottom”, wherein
notifications flow downwards and requests upwards.

51

Software Architecture: Foundations, Theory, and Practice

C2LL

SpaceCraft Clock

Request: BurnFuel
Request: UpdateData
MNotification: CalculateStatus
MNotification: DisplayStatus

Motification: Tick

Event

— Motification: Tick
gggﬂ%aé'zoﬂbg;'gg'g}gsmus Notification: DisplayStatus

Request: BurnFuel

Game Logic

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

KLAX

Score: 5060
Number of Lives: 4

| Start 5 | Quit

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

53

Software Architecture: Foundations, Theory, and Practice

KLAX In @ o

Palette C Chute Ci

C 2 Clock Component Status Component ‘Well Component

| Event |

Relative Position

Logic Matching Logic Next Tile Logic Event

=

Event Well Artist Palette Artist Chute Artist Status Artist
Status Logic Event
Tile Artist
Event
Layout Manager
Event
Graphics Binding

“ -

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Pra__

Distributed Objects: CORBA

“Objects” (coarse- or fine-grained) run on heterogeneous hosts,
written in heterogeneous languages. Objects provide services
through well-defined interfaces. Objects invoke methods across

host, process, and language boundaries via remote procedure calls
(RPCs).

Components: Objects (software components exposing services
through well-defined provided interfaces)

e Connector: (Remote) Method invocation

Data Elements: Arguments to methods, return values, and
exceptions

e Topology: General graph of objects from callers to callees.

Additional constraints imposed: Data passed in remote procedure
calls must be serializable. Callers must deal with exceptions that can
arise due to network or process faults.

Software Architecture: Foundations, Theory, and Practice

CORBA Concept and
Implementation

IDL Intel\'face

Client Object
Program Instance
Operation on object
requested by client

Conceptual View

Generated according to
Implementation Architecture language-specific mapping

Client Process J* q Server

Client Object Object Request Broker > Object Object
Program Stub (ORB) Skeleton | Instance

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

CORBA LL

X Expert Pilot Pilotin Trainee
Houston Ohject Ohject Object
¥} 1A Lt .,
Procedure Call Procedure Call Procedure Call Procedure Call Procedure Call Procedure Call
! m! I} !
in: none in: none in: burnRate in: hurnRate in: none in: none
out: altitude out: heatRate out: none out: none out: heatRate out: heatRate
Stub Stub Stub Stub Skeleton Skeleton
getAltitude() checkHeartRate() enterBurnRate() enterBurnRate() checkHeartRate() checkHeartRate()

in: "getlAtitude ()", serverRef

out: "altituce"

in: "checkHeal
out: "heartRate"

e()", ohjRef

out: none

in: "enterBurnR ate()

-] Procedure Call []
Adaptor (ORB) i "bumRater || ENterBurnRate(
out: none in: burnRate
out: none P Server

‘humRate", serverRef

in: none
out: "altitude”, objRef

in: none

out: "heartRate”

P

Skeleton

Skeleton

getAltitude()

ﬁ Lander State

»| Procedure Call []

in: none
out:altitude

57

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice :

Learning Objectives

e Delineate the role of Styles and Patterns in Software
architecture

e Understand the role and benefits of architectural styles
e Understand and apply common styles in your designs

e Construct complex styles from simpler styles

Software Architecture: Foundations, Theory, and Practice :

Observations

e Different styles result in
Different architectures
Architectures with greatly differing properties
e A style does not fully determine resulting architecture
A single style can result in different architectures
Considerable room for
e Individual judgment
e Variations among architects
e A style defines domain of discourse
About problem (domain)
About resulting system

59

Software Architecture: Foundations, Theory, and Practice?‘{i

Style Summary (1/4)

Style
Category &
Name

Summary

Language-influenced styles

Main Program Main program controls
and program execution, calling
Subroutines multiple subroutines.

Object-oriented Objects encapsulate state
and accessing functions

Layered
Virtual Virtual machine, or a
Machines layer, offers services to

layers above it

Client-server Clients request service

from a server

Use It When

Application is small and simple.

Close mapping between external
entities and internal objects is
sensible.

Many complex and interrelated
data structures.

Many applications can be based
upon a single, common layer of
services.

Interface service specification
resilient when implementation of
a layer must change.

Centralization of computation
and data at a single location (the
server) promotes manageability
and scalability; end-user
processing limited to data entry
and presentation.

Avoid It When

Complex data structures needed.
Future modifications likely.

Application is distributed in a
heterogeneous network.
Strong independence between
components necessary.

High performance required.

Many levels are required (causes
inefficiency).

Data structures must be accessed
from multiple layers.

Centrality presents a single-point-
of-failure risk; Network bandwidth
limited; Client machine capabilities
rival or exceed the server’s.

Software Architecture: Foundations, Theory, and Practice ‘:

Style Summary, continued (2/4)

Data-flow styles
Batch
sequential

Pipe-and-filter

Shared memory

Blackboard

Rule-based

Separate programs
executed sequentially,
with batched input

Separate programs, a.k.a.

filters, executed,
potentially concurrently.
Pipes route data streams
between filters

Independent programs,
access and communicate
exclusively through a
global repository known
as blackboard

Use facts or rules entered
into the knowledge base
to resolve a query

Problem easily formulated as a
set of sequential, severable
steps.

[As with batch-sequential] Filters
are useful in more than one
application. Data structures
easily serializable.

All calculation centers on a
common, changing data
structure;

Order of processing dynamically
determined and data-driven.

Problem data and queries
expressible as simple rules over
which inference may be
performed.

Interactivity or concurrency
between components necessary
or desirable.

Random-access to data required.
Interaction between components
required. Exchange of complex
data structures between
components required.

Programs deal with independent
parts of the common data.
Interface to common data
susceptible to change. When
interactions between the
independent programs require
complex regulation.

Number of rules is large.
Interaction between rules present.
High-performance required.

Software Architecture: Foundations, Theory, and Practice

Style Summary, continued (3/4)

Interpreter

Interpreter Interpreter parses and Highly dynamic behavior High performance required.
executes the input stream, required. High degree of end-
updating the state user customizability.
maintained by the
interpreter

Mobile Code Code is mobile, that is, it When it is more efficient to move Security of mobile code cannot be
is executed in a remote processing to a data set thanthe assured, or sandboxed.
host data set to processing. When tight control of versions of

When it is desirous to deployed software is required.

dynamically customize a local
processing node through
inclusion of external code

Software Architecture: Foundations, Theory, and Practice?‘{z

Style Summary, continued (4/4)

Implicit Invocation

Publish- Publishers broadcast Components are very loosely When middleware to support high-

subscribe messages to subscribers coupled. Subscription data is volume data is unavailable.

small and efficiently transported.

Event-based Independent components Components are concurrentand Guarantees on real-time
asynchronously emit and independent. processing of events is required.
receive events Components heterogeneous and
communicated over event network-distributed.
buses

Peer-to-peer Peers hold state and Peers are distributed in a Trustworthiness of independent
behavior and can act as network, can be heterogeneous, peers cannot be assured or
both clients and servers and mutually independent. managed.

Robust in face of independent Resource discovery inefficient
failures. without designated nodes.
Highly scalable.

More complex styles

C2 Layered network of When independence from When high-performance across
concurrent components substrate technologies required. many layers required.
communicating by events Heterogeneous applications. When multiple threads are

When support for product-lines inefficient.

desired.
Distributed Objects instantiated on Objective is to preserve illusion When high overhead of supporting
Objects different hosts of location-transparency middleware is excessive. When

network properties are
unmaskable, in practical terms.

