
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Architectural
Patterns and Styles

Software Architecture
Lecture 4

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of Styles and Patterns in Software
architecture

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

2

Software Architecture: Foundations, Theory, and Practice	

Patterns, Styles, and DSSAs

3

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

The Lunar Lander: A Long-Running
Example
  A simple computer game that first appeared in the

1960’s
  Simple concept:

  You (the pilot) control the descent rate of the
Apollo-era Lunar Lander
 Throttle setting controls descent engine
 Limited fuel
 Initial altitude and speed preset
 If you land with a descent rate of < 5 fps: you

win (whether there’s fuel left or not)
  “Advanced” version: joystick controls attitude &

horizontal motion
4

Software Architecture: Foundations, Theory, and Practice	

Architectural Styles: Definition

  An architectural style is a named collection of architectural
design decisions that

 are applicable in a given development context
  constrain architectural design decisions that are specific

to a particular system within that context
 elicit beneficial qualities in each resulting system

  A primary way of characterizing lessons from experience in
software system design

  Reflect less domain specificity than architectural patterns
  Useful in determining everything from subroutine structure to

top-level application structure

5

Software Architecture: Foundations, Theory, and Practice	

Basic Properties of Styles

  A vocabulary of design elements
  Component and connector types; data elements
  e.g., pipes, filters, objects, servers

  A set of configuration rules
  Topological constraints that determine allowed

compositions of elements
  e.g., a component may be connected to at most two other

components
  A semantic interpretation

  Compositions of design elements have well-defined
meanings

  Possible analyses of systems built in a style
6

Software Architecture: Foundations, Theory, and Practice	

Benefits of Using Styles

  Design reuse
  Well-understood solutions applied to new problems

  Code reuse
  Shared implementations of invariant aspects of a style

  Understandability of system organization
  A phrase such as “client-server” conveys a lot of information

  Interoperability
  Supported by style standardization

  Style-specific analyses
  Enabled by the constrained design space

  Visualizations
  Style-specific depictions matching engineers’ mental models

7

Software Architecture: Foundations, Theory, and Practice	

Style Analysis Dimensions

  What is the design vocabulary?
  Component and connector types

  What are the allowable structural patterns?
  What is the underlying computational model?
  What are the essential invariants of the style?
  What are common examples of its use?
  What are the (dis)advantages of using the style?
  What are the style’s specializations?

8

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of Styles and Patterns in Software
architecture

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

9

Software Architecture: Foundations, Theory, and Practice	

Some Common Styles
  Traditional, language-

influenced styles
  Main program and

subroutines
  Object-oriented

  Layered
  Virtual machines
  Client-server

  Data-flow styles
  Batch sequential
  Pipe and filter

  Shared memory
  Blackboard
  Rule based

  Interpreter

  Interpreter
  Mobile code

  Implicit invocation

  Event-based
  Publish-subscribe

  Peer-to-peer
  Distributed Objects

  C2
  CORBA

10

Software Architecture: Foundations, Theory, and Practice	

Main Program and Subroutines LL

11

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Object-Oriented Style

  Components are objects
  Data and associated operations

  Connectors are messages and method invocations
  Style invariants

  Objects are responsible for their internal representation
integrity

  Internal representation is hidden from other objects
  Advantages

  “Infinite malleability” of object internals
  System decomposition into sets of interacting agents

  Disadvantages
  Objects must know identities of servers
  Side effects in object method invocations 12

Software Architecture: Foundations, Theory, and Practice	

Object-Oriented LL

13

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

OO/LL in UML

14

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Layered Style

  Hierarchical system organization
  “Multi-level client-server”
  Each layer exposes an interface (API) to be used by

above layers
  Each layer acts as a

  Server: service provider to layers “above”
  Client: service consumer of layer(s) “below”

  Connectors are protocols of layer interaction
  Example: operating systems
  Virtual machine style results from fully opaque layers

15

Software Architecture: Foundations, Theory, and Practice	

Layered Style (cont’d)

  Advantages
  Increasing abstraction levels
  Evolvability
  Changes in a layer affect at most the adjacent two

layers
 Reuse

  Different implementations of layer are allowed as long
as interface is preserved

  Standardized layer interfaces for libraries and
frameworks

16

Software Architecture: Foundations, Theory, and Practice	

Layered Style (cont’d)

  Disadvantages
  Not universally applicable
  Performance

  Layers may have to be skipped
  Determining the correct abstraction level

17

Software Architecture: Foundations, Theory, and Practice	

Layered Systems/Virtual Machines

18

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Layered LL

19

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Client-Server Style

  Components are clients and servers
  Servers do not know number or identities of clients
  Clients know server’s identity
  Connectors are RPC-based network interaction protocols

20

Software Architecture: Foundations, Theory, and Practice	

Client-Server LL

21

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Data-Flow Styles

Batch Sequential
  Separate programs are executed in order; data is

passed as an aggregate from one program to the
next.

  Connectors: “The human hand” carrying tapes
between the programs, a.k.a. “sneaker-net ”

  Data Elements: Explicit, aggregate elements passed
from one component to the next upon completion of
the producing program’s execution.

  Typical uses: Transaction processing in financial
systems. “The Granddaddy of Styles”

22

Software Architecture: Foundations, Theory, and Practice	

Batch-Sequential: A Financial
Application

23

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Batch-Sequential LL

24

Not a recipe for a successful lunar mission!

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Pipe and Filter Style

  Components are filters
  Transform input data streams into output data streams
  Possibly incremental production of output

  Connectors are pipes
  Conduits for data streams

  Style invariants
  Filters are independent (no shared state)
  Filter has no knowledge of up- or down-stream filters

  Examples
  UNIX shell signal processing
  Distributed systems parallel programming

  Example: ls invoices | grep -e August | sort!

25

Software Architecture: Foundations, Theory, and Practice	

Pipe and Filter (cont’d)

  Variations
  Pipelines — linear sequences of filters
  Bounded pipes — limited amount of data on a pipe
  Typed pipes — data strongly typed

  Advantages
  System behavior is a succession of component behaviors
  Filter addition, replacement, and reuse

 Possible to hook any two filters together
  Certain analyses

 Throughput, latency, deadlock
  Concurrent execution

26

Software Architecture: Foundations, Theory, and Practice	

Pipe and Filter (cont’d)

  Disadvantages
  Batch organization of processing
  Interactive applications
  Lowest common denominator on data transmission

27

Software Architecture: Foundations, Theory, and Practice	

Pipe and Filter LL

28

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Blackboard Style

  Two kinds of components
  Central data structure — blackboard
  Components operating on the blackboard

  System control is entirely driven by the blackboard state
  Examples

  Typically used for AI systems
  Integrated software environments (e.g., Interlisp)
  Compiler architecture

29

Software Architecture: Foundations, Theory, and Practice	

Blackboard LL

30

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Rule-Based Style

 Inference engine parses user input and determines
whether it is a fact/rule or a query. If it is a fact/rule, it
adds this entry to the knowledge base. Otherwise, it
queries the knowledge base for applicable rules and
attempts to resolve the query.

31

Software Architecture: Foundations, Theory, and Practice	

Rule-Based Style (cont’d)

  Components: User interface, inference engine,
knowledge base

  Connectors: Components are tightly interconnected, with
direct procedure calls and/or shared memory.

  Data Elements: Facts and queries
  Behavior of the application can be very easily modified

through addition or deletion of rules from the knowledge
base.

  Caution: When a large number of rules are involved
understanding the interactions between multiple rules
affected by the same facts can become very difficult.

32

Software Architecture: Foundations, Theory, and Practice	

Rule Based LL

33

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Interpreter Style
 Interpreter parses and executes input commands,
updating the state maintained by the interpreter

  Components: Command interpreter, program/interpreter
state, user interface.

  Connectors: Typically very closely bound with direct
procedure calls and shared state.

  Highly dynamic behavior possible, where the set of
commands is dynamically modified. System architecture
may remain constant while new capabilities are created
based upon existing primitives.

  Superb for end-user programmability; supports
dynamically changing set of capabilities

  Lisp and Scheme
34

Software Architecture: Foundations, Theory, and Practice	

Interpreter LL

35

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Mobile-Code Style

  Summary: a data element (some representation of a
program) is dynamically transformed into a data
processing component.

  Components: “Execution dock”, which handles receipt of
code and state; code compiler/interpreter

  Connectors: Network protocols and elements for
packaging code and data for transmission.

  Data Elements: Representations of code as data;
program state; data

  Variants: Code-on-demand, remote evaluation, and
mobile agent.

36

Software Architecture: Foundations, Theory, and Practice	

Mobile Code LL

37

Scripting languages (i.e. JavaScript,
VBScript), ActiveX control,
embedded Word/Excel macros.

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Implicit Invocation Style

  Event announcement instead of method invocation
  “Listeners” register interest in and associate methods with

events
  System invokes all registered methods implicitly

  Component interfaces are methods and events
  Two types of connectors

  Invocation is either explicit or implicit in response to
events

  Style invariants
  “Announcers” are unaware of their events’ effects
  No assumption about processing in response to events

38

Software Architecture: Foundations, Theory, and Practice	

Implicit Invocation (cont’d)

  Advantages
  Component reuse
  System evolution

 Both at system construction-time & run-time
  Disadvantages

  Counter-intuitive system structure
  Components relinquish computation control to the

system
  No knowledge of what components will respond to

event
  No knowledge of order of responses

39

Software Architecture: Foundations, Theory, and Practice	

Publish-Subscribe

 Subscribers register/deregister to receive specific
messages or specific content. Publishers broadcast
messages to subscribers either synchronously or
asynchronously.

40

Software Architecture: Foundations, Theory, and Practice	

Publish-Subscribe (cont’d)

  Components: Publishers, subscribers, proxies for managing
distribution

  Connectors: Typically a network protocol is required.
Content-based subscription requires sophisticated connectors.

  Data Elements: Subscriptions, notifications, published
information

  Topology: Subscribers connect to publishers either directly or
may receive notifications via a network protocol from
intermediaries

  Qualities yielded Highly efficient one-way dissemination of
information with very low-coupling of components

41

Software Architecture: Foundations, Theory, and Practice	

Pub-Sub LL

42

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Event-Based Style

  Independent components asynchronously emit and receive
events communicated over event buses

  Components: Independent, concurrent event generators and/
or consumers

  Connectors: Event buses (at least one)
  Data Elements: Events – data sent as a first-class entity over

the event bus
  Topology: Components communicate with the event buses,

not directly to each other.
  Variants: Component communication with the event bus may

either be push or pull based.
  Highly scalable, easy to evolve, effective for highly distributed

applications. 43

Software Architecture: Foundations, Theory, and Practice	

Event-based LL

44

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Peer-to-Peer Style

  State and behavior are distributed among peers
which can act as either clients or servers.

  Peers: independent components, having their own
state and control thread.

  Connectors: Network protocols, often custom.
  Data Elements: Network messages

45

Software Architecture: Foundations, Theory, and Practice	

Peer-to-Peer Style (cont’d)

  Topology: Network (may have redundant connections
between peers); can vary arbitrarily and dynamically

  Supports decentralized computing with flow of
control and resources distributed among peers.
Highly robust in the face of failure of any given node.
Scalable in terms of access to resources and
computing power. But caution on the protocol!

46

Software Architecture: Foundations, Theory, and Practice	

Peer-to-Peer LL

47

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of Styles and Patterns in Software
architecture

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

48

Software Architecture: Foundations, Theory, and Practice	

Heterogeneous Styles

  More complex styles created through composition of
simpler styles

  REST (from the first lecture)
  Complex history presented later in course

  C2
  Implicit invocation + Layering + other constraints

  Distributed objects
  OO + client-server network style

49

Software Architecture: Foundations, Theory, and Practice	

C2 Style

 An indirect invocation style in which independent
components communicate exclusively through
message routing connectors. Strict rules on
connections between components and connectors
induce layering.

50

Software Architecture: Foundations, Theory, and Practice	

C2 Style (cont’d)
  Components: Independent, potentially concurrent

message generators and/or consumers
  Connectors: Message routers that may filter,

translate, and broadcast messages of two kinds:
notifications and requests.

  Data Elements: Messages – data sent as first-class
entities over the connectors. Notification messages
announce changes of state. Request messages
request performance of an action.

  Topology: Layers of components and connectors,
with a defined “top” and “bottom”, wherein
notifications flow downwards and requests upwards.

51

Software Architecture: Foundations, Theory, and Practice	

C2 LL

52

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

KLAX

53

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

KLAX in
C2

54

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Distributed Objects: CORBA

  “Objects” (coarse- or fine-grained) run on heterogeneous hosts,
written in heterogeneous languages. Objects provide services
through well-defined interfaces. Objects invoke methods across
host, process, and language boundaries via remote procedure calls
(RPCs).

  Components: Objects (software components exposing services
through well-defined provided interfaces)

  Connector: (Remote) Method invocation
  Data Elements: Arguments to methods, return values, and

exceptions
  Topology: General graph of objects from callers to callees.
  Additional constraints imposed: Data passed in remote procedure

calls must be serializable. Callers must deal with exceptions that can
arise due to network or process faults.

55

Software Architecture: Foundations, Theory, and Practice	

CORBA Concept and
Implementation

56

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

CORBA LL

57

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission. "

Software Architecture: Foundations, Theory, and Practice	

Learning Objectives

  Delineate the role of Styles and Patterns in Software
architecture

  Understand the role and benefits of architectural styles

  Understand and apply common styles in your designs

  Construct complex styles from simpler styles

58

Software Architecture: Foundations, Theory, and Practice	

Observations

  Different styles result in
  Different architectures
  Architectures with greatly differing properties

  A style does not fully determine resulting architecture
  A single style can result in different architectures
  Considerable room for

  Individual judgment
  Variations among architects

  A style defines domain of discourse
  About problem (domain)
  About resulting system

59

Software Architecture: Foundations, Theory, and Practice	

Style Summary (1/4)

60

Software Architecture: Foundations, Theory, and Practice	

Style Summary, continued (2/4)

61

Software Architecture: Foundations, Theory, and Practice	

Style Summary, continued (3/4)

62

Software Architecture: Foundations, Theory, and Practice	

Style Summary, continued (4/4)

63

