Analysis of
Software Architectures

Software Architecture
Lecture 8

Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Software Architecture: Foundations, Theory, and Practice :

Learning Objectives

e Define architectural analysis concerns

e List the goals of architectural analysis

e Define the scope of architectural analysis
e List the stakeholders, types of analysis etc.

e Apply the above classification to analysis techniques

Software Architecture: Foundations, Theory, and Practi

What Is Architectural Analysis?

e Architectural analysis is the activity of discovering
important system properties using the system’s
architectural models.

Early, useful answers about relevant architectural
aspects

Available prior to system’s construction
e Important to know
which questions to ask
why to ask them
how to ask them
how to ensure that they can be answered

Software Architecture: Foundations, Theory, and Practice

Informal Architectural Models
and Analysis

e Helps architects get
clarification from
system customers

e Helps managers
ensure project
scope

e Not as useful to
developers

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Formal Architectural
Analysis

Software Architecture: Foundations, Theory, and Pract a

Models and

Component UserInterface
Port getValues
Port calculate
Computation
Connector Call
Role Caller =
Role Callee
Glue =
Configuration
Instances
DS : DataStore
C : Calculation
UI : UserlInterface
CtoUIgetValues, CtoUlstoreValues,
Attachments
C.getValues as CtoUIgetValues.Caller
DS.getValues as CtoUIgetValues.Callee
C.storeValues as CtoUIstoreValues.Caller
DS.storeValues as CtoUIstoreValues.Callee
UIl.calculate as UItoC.Caller
C.calulate as UItoC.Callee
UI.getValues as UItoDS.Caller
DS.getValues as UItoDS.Callee
End LunarlLander.

LunarlLander

UItoC, UItoDS

: Call

e Helps architects
determine
component
composability

e Helps developers
with
implementation-
level decisions

e Helps with locating
and selecting
appropriate OTS
components

e Helps with
automated code
generation

e Not as useful for
discussions with
non-technical
stakeholders

&l

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practicr

Concerns Relevant to Architectural
Analysis

Goals of analysis

Scope of analysis

Primary architectural concern being analyzed
Level of formality of architectural models
Type of analysis

Level of automation

System stakeholders interested in analysis

Software Architecture: Foundations, Theory, and Practice :

Learning Objectives

e Define architectural analysis concerns

e List the goals of architectural analysis

e Define the scope of architectural analysis
e List the stakeholders, types of analysis etc.

e Apply the above classification to analysis techniques

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis Goals

e The four “C"s
Completeness
Consistency
Compatibility
Correctness

Software Architecture: Foundations, Theory, and

Architectural Analysis Goals -
Completeness

e Completeness is both an external and an internal
goal

e It is external with respect to system requirements

Challenged by the complexity of large systems’
requirements and architectures

Challenged by the many notations used to capture
complex requirements as well as architectures

e It is internal with respect to the architectural intent
and modeling notation

Have all elements been fully modeled in the
notation?

Have all design decisions been properly captured?

Software Architecture: Foundations, Theory, and Practicr

Architectural Analysis Goals -

Consistency
e Consistency is an internal property of an architectural
model

e Ensures that different model elements do not
contradict one another

e Dimensions of architectural consistency
Name
Interface
Behavior
Interaction
Refinement

10

Software Architecture: Foundations, Theory, and Practice

Name Consistency

e Component and connector names
e Component service names
e May be non-trivial to establish at the architectural level

Multiple system elements/services with identical
names

Loose coupling via publish-subscribe or asynchronous
event broadcast

Dynamically adaptable architectures

E

Software Architecture: Foundations, Theory, and Practice

Interface Consistency

Encompasses name consistency

Also involves parameter lists in component services
A rich spectrum of choices at the architectural level
Example: matching provided and required interfaces

RegInt: getSubQ (Natural first, Natural last, Boolean remove)

returns FIFOQueue;

ProvIntl: getSubQ(Index first, Index last)

returns FIFOQueue;

ProvInt2: getSubQ (Natural first, Natural last, Boolean remove)

returns Queue;

Software Architecture: Foundations, Theory, and Practice

Behavioral Consistency

e Names and interfaces of interacting components may match, but
behaviors need not

e Example: subtraction

subtract (Integer x, Integer y) returns Integer;

Can we be sure what the subtract operation does?
e Example: QueueClient and QueueServer components

QueueClient

precondition g.size > 0;
postcondition ~g.size = g.size;
QueueServer

precondition g.size > 1;
postcondition ~g.size = g.size - 1;

13

Software Architecture: Foundations, Theory, and Practice

Interaction Consistency

ames, interfaces, and behaviors of interacting
omponents may match, yet they may still be unable
o0 interact properly

xample: QueueClient and QueueServer components

enqueue
[q.size < g.max — 1]

enqueue enqueus
/\ [q.size = g.max — 1]
dequeue X} dequeue
[q.size = 1] q

dequeue
[q.size > 1]

Full

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

14

Software Architecture: Foundations, Theory, and Practic

Refinement Consistency

e Architectural models are refined during the design
process

e A relationship must be maintained between higher and
lower level models

All elements are preserved in the lower level model

All design decisions are preserved in the lower-level
model

No new design decisions violate existing design
decisions

15

Software Architecture: Foundations, Theory, and Practice

Refinement Consistency Example

File System
Memory Network
Manager Interface
. Process Inter-Process
. Scheduler Communications

Library

W2s N NN NN

Initialization

", . g
Legend S RN “\ o
—emieme DUEE . % \\\
- Al pY L B
Data .\CQ\QSS ey The scheduleras a connectog
Interrupt ey S | . »| Application
% ' 1 =i s Process
- Procedure call ‘_Ketnel S H
\ - '
- - ' Application
System — [7 »| sched : m
Resources |3 3 .
\ C :
N L Application
) -’
CPU New

Application
Process

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practicr

Architectural Analysis Goals -
Compatibility

e Compatibility is an external property of an architectural
model

e Ensures that the architectural model adheres to
guidelines and constraints of

a style
a reference architecture
an architectural standard

17

Software Architecture: Foundations, Theory, and Practice

Architecturai Compatibility Example -
Lunar Lander

SpaceCraft Clock
[
Send: a, br, f, v send: t (sec)
=J
Event
ca,br, f, v

Game Logic

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Prac :

Architectural Analysis Goals -
Correctness

e Correctness is an external property of an architectural model
e Ensures that
the architectural model fully realizes a system
specification
the system’s implementation fully realizes the
architecture
e Inclusion of OTS elements impacts correctness

System may include structural elements, functionality,
and non-functional properties that are not part of the
architecture

The notion of fulfillmentis key to ensuring architectural
correctness

Software Architecture: Foundations, Theory, and Practice :

Learning Objectives

e Define architectural analysis concerns

e List the goals of architectural analysis

e Define the scope of architectural analysis
e List the stakeholders, types of analysis etc.

e Apply the above classification to analysis techniques

Software Architecture: Foundations, Theory, and Practice

Scope of Architectural Analysis

e Component- and connector-level
e Subsystem- and system-level
Beware of the “honey-baked ham” syndrome
e Data exchanged in a system or subsystem
Data structure
Data flow
Properties of data exchange
e Architectures at different abstraction levels
e Comparison of two or more architectures
Processing
Data
Interaction
Configuration
Non-functional properties

21

Software Architecture: Foundations, Theory, and Practice

Data Exchange Example

Producer
<data frequency: 1 Mbps>

I

Multicast Connector

l l

Consumer 1 Consumer 2
<data frequency: 2 Mbps> <data frequency: 500 Kbps>

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice

Architectureé at Different Abstraction
Levels

C1 C2

N C11| |C12| |C21

C3 — C4 t * +
C13#»C14| |C22

C31#C32»C41(C42

v

C33

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

Software Architecture: Foundations, Theory, and Practice :

Learning Objectives

e Define architectural analysis concerns

e List the goals of architectural analysis

e Define the scope of architectural analysis
e List the stakeholders, types of analysis etc.

e Apply the above classification to analysis techniques

Software Architecture: Foundations, Theory, and Practice

Architectural Concern Being
Analyzed

Structural characteristics
Behavioral characteristics
Interaction characteristics
Non-functional characteristics

25

Software Architecture: Foundations, Theory, and Practice

Level of Formality

e Informal models
e Semi-formal models
e Formal models

26

Software Architecture: Foundations, Theory, and Practice

Type of Analysis

e Static analysis
e Dynamic analysis
e Scenario-driven analysis
Can be both static and dynamic

27

Software Architecture: Foundations, Theory, and Practice

Level of Automation

e Manual
e Partially automated
e Fully automated

28

Software Architecture: Foundations, Theory, and Practice

Analysis Stakeholders

Architects
Developers
Managers
Customers
Vendors

29

Software Architecture: Foundations, Theory, and Practice

Architectural Analysis in a Nutshell

Architectural

Analysis
Goals Models
Completeness Informal
Consistency Semi-formal
Name Formal
Interface —— Type
Behavior Static
Interaction Dynamic
Refinement Scenario-based
Compatibility Automation Level
Correctness Manual
——— Scope Partially automated
Component- and connector-level Automated
Subsystem- and system-level Stakeholders
Data exchange Architects
——— Different abstraction levels Developers
Architecture comparison Managers
Concerns Customers
Structural Vendors
Behavioral
Interaction
Non-functional

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; © 2008 John Wiley & Sons, Inc. Reprinted with permission.

