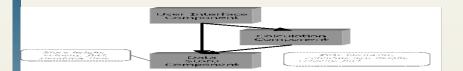
Analysis of Software Architectures

Software Architecture Lecture 8


Learning Objectives

- Define architectural analysis concerns
- List the goals of architectural analysis
- Define the scope of architectural analysis
- List the stakeholders, types of analysis etc.
- Apply the above classification to analysis techniques

What Is Architectural Analysis?

- Architectural analysis is the activity of discovering important system properties using the system's architectural models.
 - Early, useful answers about relevant architectural aspects
 - Available prior to system's construction
- Important to know
 - which questions to ask
 - 2. why to ask them
 - 3. how to ask them
 - 4. how to ensure that they can be answered

Informal Architectural Models and Analysis

- Helps architects get clarification from system customers
- Helps managers ensure project scope
- Not as useful to developers

Formal Architectural Models and Analysis

```
Component UserInterface
 Port getValues
  Port calculate
 Computation
Connector Call
 Role Caller =
 Role Callee =
 Glie =
Configuration LunarLander
  Instances
   DS : DataStore
   C : Calculation
   UI : UserInterface
   CtoUIgetValues, CtoUIstoreValues, UItoC, UItoDS: Call
 Attachments
   C.getValues as CtoUIgetValues.Caller
   DS.getValues as CtoUIgetValues.Callee
    C.storeValues as CtoUIstoreValues.Caller
    DS.storeValues as CtoUIstoreValues.Callee
   UI.calculate as UItoC.Caller
   C.calulate as UItoC.Callee
   UI.getValues as UItoDS.Caller
   DS.getValues as UItoDS.Callee
End LunarLander.
```

- Helps architects determine component composability
- Helps developers with implementationlevel decisions
- Helps with locating and selecting appropriate OTS components
- Helps with automated code generation
- Not as useful for discussions with non-technical stakeholders

Concerns Relevant to Architectural Analysis

- Goals of analysis
- Scope of analysis
- Primary architectural concern being analyzed
- Level of formality of architectural models
- Type of analysis
- Level of automation
- System stakeholders interested in analysis

Learning Objectives

- Define architectural analysis concerns
- List the goals of architectural analysis
- Define the scope of architectural analysis
- List the stakeholders, types of analysis etc.
- Apply the above classification to analysis techniques

Architectural Analysis Goals

- The four "C"s
 - Completeness
 - Consistency
 - Compatibility
 - Correctness

Architectural Analysis Goals – Completeness

- Completeness is both an external and an internal goal
- It is *external* with respect to system requirements
 - Challenged by the complexity of large systems' requirements and architectures
 - Challenged by the many notations used to capture complex requirements as well as architectures
- It is internal with respect to the architectural intent and modeling notation
 - Have all elements been fully modeled in the notation?
 - Have all design decisions been properly captured?

Architectural Analysis Goals – Consistency

- Consistency is an internal property of an architectural model
- Ensures that different model elements do not contradict one another
- Dimensions of architectural consistency
 - Name
 - Interface
 - Behavior
 - Interaction
 - Refinement

Name Consistency

- Component and connector names
- Component service names
- May be non-trivial to establish at the architectural level
 - Multiple system elements/services with identical names
 - Loose coupling via publish-subscribe or asynchronous event broadcast
 - Dynamically adaptable architectures

Interface Consistency

- Encompasses name consistency
- Also involves parameter lists in component services
- A rich spectrum of choices at the architectural level
- Example: matching provided and required interfaces

```
ReqInt: getSubQ(Natural first, Natural last, Boolean remove)
    returns FIFOQueue;

ProvInt1: getSubQ(Index first, Index last)
    returns FIFOQueue;

ProvInt2: getSubQ(Natural first, Natural last, Boolean remove)
    returns Queue;
```

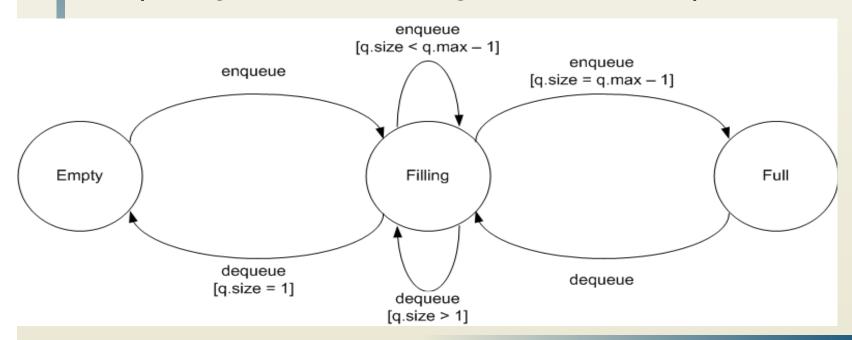
Behavioral Consistency

- Names and interfaces of interacting components may match, but behaviors need not
- Example: subtraction

```
subtract(Integer x, Integer y) returns Integer;
```

- Can we be sure what the subtract operation does?
- Example: QueueClient and QueueServer components

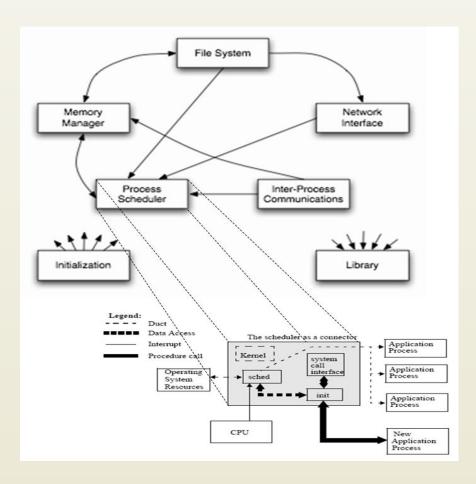
QueueClient


```
precondition q.size > 0;
postcondition ~q.size = q.size;
```

QueueServer

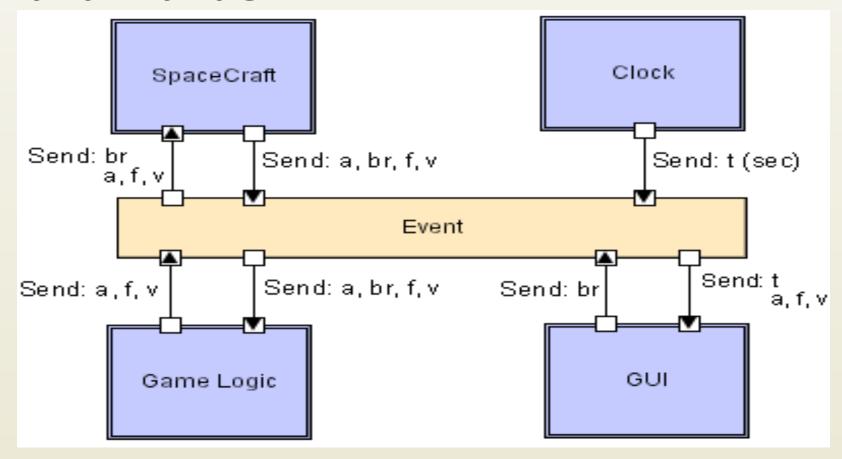
```
precondition q.size > 1;
postcondition ~q.size = q.size - 1;
```

Interaction Consistency


- Names, interfaces, and behaviors of interacting components may match, yet they may still be unable to interact properly
- Example: QueueClient and QueueServer components

Refinement Consistency

- Architectural models are refined during the design process
- A relationship must be maintained between higher and lower level models
 - All elements are preserved in the lower level model
 - All design decisions are preserved in the lower-level model
 - No new design decisions violate existing design decisions


Refinement Consistency Example

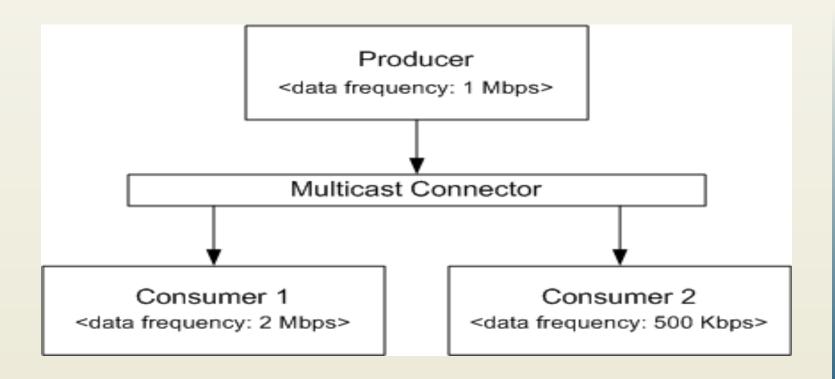
Architectural Analysis Goals – Compatibility

- Compatibility is an external property of an architectural model
- Ensures that the architectural model adheres to guidelines and constraints of
 - a style
 - a reference architecture
 - an architectural standard

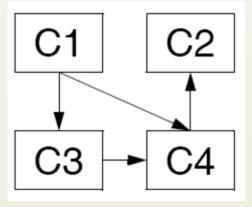
Architectural Compatibility Example – Lunar Lander

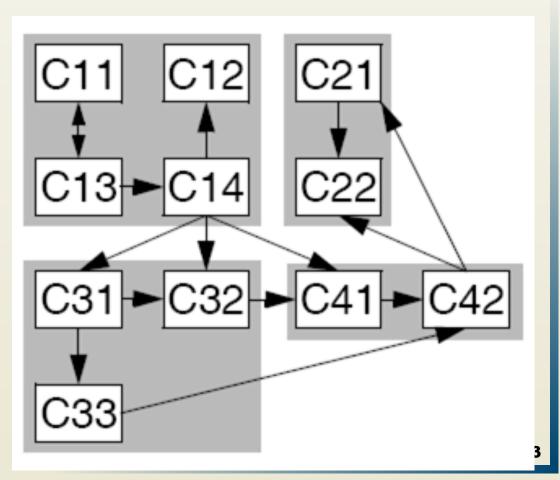
Architectural Analysis Goals – Correctness

- Correctness is an external property of an architectural model
- Ensures that
 - the architectural model fully realizes a system specification
 - the system's implementation fully realizes the architecture
- Inclusion of OTS elements impacts correctness
 - System may include structural elements, functionality, and non-functional properties that are not part of the architecture
 - The notion of *fulfillment* is key to ensuring architectural correctness


Learning Objectives

- Define architectural analysis concerns
- List the goals of architectural analysis
- Define the scope of architectural analysis
- List the stakeholders, types of analysis etc.
- Apply the above classification to analysis techniques


Scope of Architectural Analysis


- Component- and connector-level
- Subsystem- and system-level
 - Beware of the "honey-baked ham" syndrome
- Data exchanged in a system or subsystem
 - Data structure
 - Data flow
 - Properties of data exchange
- Architectures at different abstraction levels
- Comparison of two or more architectures
 - Processing
 - Data
 - Interaction
 - Configuration
 - Non-functional properties

Data Exchange Example

Architectures at Different Abstraction Levels

Learning Objectives

- Define architectural analysis concerns
- List the goals of architectural analysis
- Define the scope of architectural analysis
- List the stakeholders, types of analysis etc.
- Apply the above classification to analysis techniques

Architectural Concern Being Analyzed

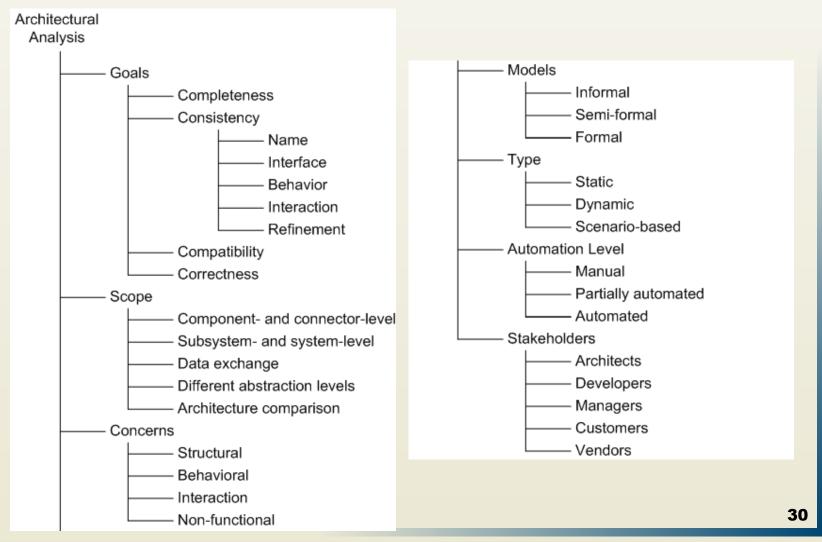
- Structural characteristics
- Behavioral characteristics
- Interaction characteristics
- Non-functional characteristics

Level of Formality

- Informal models
- Semi-formal models
- Formal models

Type of Analysis

- Static analysis
- Dynamic analysis
- Scenario-driven analysis
 - Can be both static and dynamic


Level of Automation

- Manual
- Partially automated
- Fully automated

Analysis Stakeholders

- Architects
- Developers
- Managers
- Customers
- Vendors

Architectural Analysis in a Nutshell

