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ABSTRACT

We describe the implementation of an OpenFlow Switch on
the NetFPGA platform. OpenFlow is a way to deploy exper-
imental or new protocols in networks that carry production
traffic. An OpenFlow network consists of simple flow-based
switches in the datapath, with a remote controller to manage
several switches. In practice, OpenFlow is most often added
as a feature to an existing Ethernet switch, IPv4 router or
wireless access point. An OpenFlow-enabled device has an
internal flow-table and a standardized interface to add and
remove flow entries remotely.

Our implementation of OpenFlow on the NetFPGA is one
of several reference implementations we have implemented
on different platforms. Our simple OpenFlow implementa-
tion is capable of running at line-rate and handling all the
traffic that is going through the Stanford Electrical Engi-
neering and Computer Science building. We compare our
implementation’s complexity to a basic IPv4 router imple-
mentation and a basic Ethernet learning switch implementa-
tion. We describe the OpenFlow deployment into the Stan-
ford campus and the Internet2 backbone.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internet-
working— Routers; C.2.2 [Computer-Communication Net-
works]: Network Protocols; C.2.1 [Computer-Communic-
ation Networks]: Network Architecture and Design; C.2.5
[Computer-Communication Networks|: Local and Wide-
Area Networks; C.2.6 [Computer-Communication Net-
works]|: Internetworking
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1. INTRODUCTION

Today it has become extremely difficult to innovate in
the computer networks that we use everyday in our schools,
businesses, and homes. Current implementations of main-
stream network devices, such as Ethernet switches and TP
routers, are typically closed platforms that can not be eas-
ily modified or extended. The processing and routing of
packets is restricted to the functionality supported by the
vendor. And even if it were possible to reprogram net-
work devices, network administrators would be loathe to
allow researchers and developers to disrupt their production
network. We believe that because network-users, network-
owners and network-operators can not easily add new func-
tionality into their network, the rate of innovation—and
improvement—is much lower than it could be. Rather than
leave network innovation to a relatively small number of
equipment vendors, our goal in the OpenFlow project [19] is
to enable a larger population of researchers and developers
to evolve our networks, and so accelerate the deployment
of improvements, and create a marketplace for ideas. To-
day, most new ideas proposed by the research community—
however good—never make it past being described in a pa-
per or conference. We hope that OpenFlow will go so some
way to reduce the number of lost opportunities.

OpenFlow is described in more detail in [12], along with
a number of motivating applications.

In brief, an OpenFlow network consists of OpenFlow com-
pliant switches and OpenFlow controller(s) with unmodified
end-hosts. Essentially, OpenFlow separates the ”"datapath”
over which packets flow, from the ”"control path” that man-
ages the datapath elements. The datapath elements are
flow-switches, consisting of a flow-table and the means to
talk to a remote Controller using the OpenFlow Protocol.
A flow is defined as all the packets matching a flow-entry
in a switch’s flow-table. Flow entries are quite general, and
resemble ACL entries found in firewalls—although here they
can include fields from layers 2, 3 and 4. The controller de-
cides which flows to admit and the path their packets should
follow. To some extent, OpenFlow resembles previous at-
tempts to separate control from the datapath: for example,



IP Switching [13] and 4D [5]. OpenFlow differs in that it
only defines the flow-based datapath switches, and the pro-
tocol for adding and deleting flow entries. It deliberately
does not define the controller—the owner of an OpenFlow
network is free to use any controller that speaks the Open-
Flow protocol—it could be written by a researcher, down-
loaded from a repository, written by the network owner, or
any combination. Available controller include the policy
based controller NOX [17]' as well as a testing controller
included with the OpenFlow test suite. We expect and en-
courage other controllers to follow.

The simplest OpenFlow switch consists mainly of a flow
table and an interface for modifying flow table entries. Each
entry consists of a flow description and an action associated
with that flow. In practice, OpenFlow is usually added as
a feature to an existing Ethernet switch, router or access
point. Experimental traffic (usually distinguished by VLAN
ID) is processed by the flow-table, while production traffic
is processed using the normal Layer-2 or Layer-3 protocols.
However, in this paper, we restrict our interest to a “pure”
OpenFlow switch that implements the OpenFLow Type 0
specification [18].

The OpenFlow controller establishes a Secure Socket Layer
(SSL) connection to an OpenFlow switch and uses the Open-
Flow interface to add, remove, and update flow table entries.
If a packet arrives to a switch and it is not matched in the
flow table, it is encapsulated and sent to the controller over
the SSL channel. The controller can then examine it, update
any flow table entries in the network, and send the packet
back to the switch.

We are working with several vendors to add OpenFlow as
a feature to their products, either as a supported feature, or
on an experimental basis. For example, working with HP
Labs and Cisco researchers, OpenFlow has been added—on
an experimental basis—to the ProCurve 5400 and Catalyst
6500 series switches respectively. NEC has added OpenFlow
to the IP8800 router, and we are nearing completion of a
prototype on top of the Junos SDK in the Juniper MX-
series router. We expect several other announcements in
the coming months. We are deploying OpenFlow as the
production network in the Gates Computer Science and the
Center for Integrated Systems (CIS) buildings at Stanford,;
and on 100 WiF1i access points to which OpenFlow has been
added. OpenFlow is also being deployed in the Internet2
backbone [4] on our experimental NetFPGA network.

This paper describes the implementation of a full line-rate
4-port 1-GigE OpenFlow switch on NetFPGA [16]. NetF-
PGA is a platform that enables researchers and students to
experiment with Gigabit rate networking hardware. It con-
sists of a PCI card that has an FPGA, memory (SRAM and
DRAM), and four 1-GigE Ethernet ports. Hardware de-
scription source code (gateware) and software source code is
freely available online for building sample designs such as a
4-port IPv4 router and a 4-port NIC.

We will describe the implementation of OpenFlow on the
NetFPGA and compare its complexity to other standard
packet switching elements—an Ethernet switch and an IPv4
router. We will also compare it to a standard 4-port NIC im-
plementation. Section 2 describes OpenFlow in more detail,
section 3 describes NetFPGA, section 4 describes the Open-
Flow implementation on the NetFPGA, section 5 discusses

!OpenFlow and NOX both share a common heritage from
Ethane [1].

our implementation results, section 6 describes our Open-
Flow deployment at Stanford and in Internet2, section 7
describes works that are similar or related to OpenFlow and
NetFPGA, and section 8 concludes the paper.

2. OPENFLOW ARCHITECTURE

OpenFlow is simple. It pushes complexity to controller
software so that the controller administrator has full control
over it. This is done by pushing forwarding decisions to a
“logically” centralized controller, and allowing the controller
to add and remove forwarding entries in OpenFlow switches.
This places all complexity in one place where it can be man-
aged, transferring the cost from every switch in the network
to a single location.

Centralizing complexity allows the network administra-
tor to keep close watch over the behavior of the network.
Since she has tight and direct control over forwarding in the
switches, she can manage network resources and separate
production traffic from experimental traffic. The central
controller can be programmed to behave as a multiplexer
that splits traffic belonging to different network users onto
different user-controlled OpenFlow controllers, all under the
network administrator’s control. This form of network virtu-
alization allows researchers to run their own protocols on the
physical network while leaving control in the hands of the
network administrator. See NOX [6] for a powerful Open-
Flow controller implementation.

The basic OpenFlow switch version “type”, the OpenFlow
Type-0 switch, classifies packets into flows based on a 10-
tuple which can be matched exactly or using wildcards for
fields. The following fields constitute the 10-tuple:

- Switch input port

- Source MAC address

- Destination MAC address

- Ethernet Type

- VLAN ID

- IP source address

- IP destination address

- IP protocol

- TCP/UDP source port

- TCP/UDP destination port

Flow table entries are matched using this 10-tuple to find
the corresponding actions associated with the flow. The
OpenFlow Type-0 switch has three required actions:

- Forward to a specified set of output ports: This is used
to move the packet across the network.

- Encapsulate and send to the controller: The packet is
sent via the secure channel to the remote OpenFlow
controller. This is typically used for the first packet of
a flow to establish a path in the network.

- Drop: Can be used for security, to curb denial of ser-
vice attacks, or to reduce spurious broadcast discovery
traffic from end-hosts.
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Figure 1: Steps when a new flow arrives at an Open-
Flow switch.

The protocol also specifies other optional per-packet mod-
ifications such as VLAN modification, IP address rewrit-
ing, and TCP/UDP port rewriting. Future revisions of
the protocol describing more advanced “types” of OpenFlow
switches will provide more general matching and actions.

If a match is not found for an arriving packet, the packet
is sent to the controller which decides on the action(s) that
should be associated with all packets from the same flow.
The decision is then sent to the switch and cached as an
entry in the switch’s flow table. The next arriving packet
that belongs to the same flow is then forwarded at line-rate
through the switch without consulting the controller.

Figure 1 shows the steps for routing a flow between two
hosts across two switches. In the diagram on the left, the
switch flow tables are empty. When a new packet arrives
in step 1, it is forwarded to the controller in step 2. The
controller examines the packet and inserts entries into the
flow tables of the switches on the flow’s path in step 3. The
packet is then sent through to the receiving host in steps 4
and 5. In steps 6,7, and 8 any new packets belonging to the
same flow are routed directly since they would match the
new entry in the flow tables.

More details on the protocol can be found in the Open-
Flow whitepaper [12] and the protocol specification [18].
Readers familiar with Ethane [1] will notice OpenFlow’s
resemblance to Ethane’s datapath. Indeed, OpenFlow is
based on Ethane’s datapath. It formalizes the datapath and
provides an abstraction that allows users to build and ex-
tend beyond Ethane’s scope. We are using OpenFlow in
several projects here at Stanford such as wireless mobility,
power-aware networking, and network virtualization.

3. NETFPGA

The NetFPGA platform consists of three parts: hardware,
gateware, and software. The hardware is a PCI card that
has the following core components:

- Xilinx Virtex-1I Pro 50
4x 1 Gbps Ethernet ports using a soft MAC core

- Two parallel banks of 18 MBit Zero-bus turnaround
(ZBT) SRAM

64 MBytes DDR DRAM

Figure 2 shows a more detailed block diagram of the com-
ponents of the NetFPGA board. Several of these parts are
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Figure 2: Detailed block diagram of the components
of the NetFPGA board.

donated by manufacturers for academic use, reducing the
cost?.

Software and gateware (Verilog HDL source code) are
available for download under an open source license from
netfpga.org. This allows jumpstarting prototypes and quickly
building on existing designs such as an IPv4 router or a NIC.
The gateware is designed to be modular and easily extensi-
ble. Designs are implemented as modular stages connected
together in a pipeline, allowing the addition of new stages
with relatively small effort [15]. The pipeline is depicted in
Figure 3.

Gateware: There are two reference designs distributed
with the official NetFPGA release that run on the NetF-
PGA: an IPv4 router, and a 4-port NIC. All reference de-
signs are based on a generic reference pipeline shown in Fig-
ure 4. The reference pipeline captures the main stages of
packet processing in a network switch. The Rx Queues pull
packets from the I/O ports, the Input Arbiter selects which
Rx Queue to service, the Output Port Lookup decides which
output queue to store a packet in, the Output Queues mod-
ule stores packets until the output port is ready, and the Tx
Queues send packets out on the 1/O ports.

The main switching decision usually happens in the Out-
put Port Lookup stage and it differentiates an IPv4 router
from a NIC or an Ethernet switch. We have also imple-
mented a learning Ethernet switch which we will use for
comparison in this paper.

Software: The software includes the NetFPGA device dr-
ivers, utilities, and two router controller packages that can
populate the IPv4 Router’s hardware forwarding table. The
first is a stand-alone routing software package based on PW-
OSPF [23] that runs entirely in user space. The second is
a daemon that mirrors Linux’s routing tables from memory
into the hardware. This allows using standard open-source
routing tools to easily build a full line-rate 4Gbps router
using hardware acceleration.

4. OPENFLOW SWITCH

We have implemented an OpenFlow switch using NetF-
PGA to understand the limitations and difficulties faced by

2At the time of writing, boards are available for $500 for
research and teaching.
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Figure 3: Modular NetFPGA pipeline structure:
There are two main buses that traverse logic —
the packet bus and the register bus. The high-
bandwidth packet bus is used for packet processing
while the register bus is used to carry status and
control information between hardware modules and
the software.

OpenFlow switch designers. Our implementation can hold
more than 32,000 exact-match flow entries and is capable
of running at line-rate across the four NetFPGA ports. By
using the currently reserved memory area for future expan-
sion, the exact-match flow table can be expanded to hold
more than 65000 entries.

41 Software

The OpenFlow switch management software extends the
OpenFlow reference software implementation. This is an
open-source software package for Linux that implements an
OpenFlow switch in software and is available for download
from the OpenFlow website [19]. The reference software can
be divided into two sections: user-space and kernel-space.

The user-space process communicates with the OpenFlow
controller using SSL to encrypt the communication. The
OpenFlow protocol specifies the format for messages be-
tween the switch and controller. Messages from the switch
to the controller such as arrival of new flows or link state
updates and messages from the controller to the switch such
as requests to add or delete flow table entries are exchanged
between this user-space process and the kernel module via
IOCTL system calls.

The kernel module is responsible for maintaining the flow
tables, processing packets, and updating statistics. By de-
fault the reference OpenFlow switch kernel module creates
these tables only in software, matching packets received via
NICs on the host PC. The tables are linked together as a
chain, and each packet is tested for a match sequentially in
each table in the chain. Priority is given to the first ta-
ble that matches in the chain. The wildcard lookup table
in the software is implemented using a linear search table,
while the exact lookup table is a hash table using two-way
hashing.

The OpenFlow kernel module enables extensibility by al-
lowing a secondary hardware-specific module to register ad-
ditional tables with it. The additional flow tables take pri-
ority over the primary module’s tables for all flow requests
(including statistics reporting). We have extended the refer-
ence system by adding a NetFPGA OpenFlow kernel mod-
ule. This module takes advantage of the OpenFlow kernel
module interface and links the hardware tables with the pri-

User Data Path

Input Arbiter
v
Output Queues

v
EHEEEEEEE

| Output Port Lookup

Figure 4: The IPv4 Router is built using the “Refer-
ence Pipeline” - a simple canonical five stage pipeline
that can be applied to a variety of networking hard-
ware.

mary OpenFlow module.

Packets arriving at the NetFPGA that match an existing
entry are forwarded in hardware at line-rate. Packets that
do not match an existing flow in hardware, i.e. new flows,
are sent up to the OpenFlow kernel module which will then
handle the packet, potentially forwarding it on to the con-
troller.

In the event that the NetFPGA hardware flow tables are
full, the kernel module will refuse to insert the entry into
its flow table. This causes the entry to be inserted into the
primary OpenFlow module’s software flow tables. Future
packets from such flows will not match in hardware, and
will be passed up to software for processing.

42 Hardware

The OpenFlow implementation on the NetFPGA is shown
in Figure 5. It uses the reference pipeline shown in Figure 4.
Whereas, in the IPv4 router, the Output Port Lookup stage
executes the longest prefix match (LPM) and ARP lookups,
the OpenFlow Output Port Lookup stage does matching
using the 10-tuple described above. The OpenFlow Lookup
stage implements the flow table using a combination of on-
chip TCAMs and off-chip SRAM to support a large number
of flow entries and allow matching on wildcards.

As a packet enters the stage, the Header Parser pulls the
relevant fields from the packet and concatenates them. This
forms the flow header which is then passed to the Wildcard
Lookup and Ezact Lookup modules. The Exact Lookup mod-
ule uses two hashing functions on the flow header to index
into the SRAM and reduce collisions. In parallel with the
Exact Lookup, the Wildcard Lookup module performs the
lookup in the TCAMs to check for any matches on flow en-
tries with wildcards. The TCAMs are implemented as 8 par-
allel 32-entry 32-bit TCAMSs using Xilinx SRL16e primitives.
These were generated using Xilinx’s IP core generator—
coregen— as in [25], [24].

The Exact Lookup is a state machine that is tightly syn-
chronized with the SRAM controller. The internal pipeline
runs at 125MHz with a 64-bit bus width, which means that
it can handle 8 Gbps. Since minimum size packet is 8 words,
then in the worst case we can expect a new packet every 16
cycles, and we need to perform one lookup every 16 cycles
to maintain line-rate. The implemented state machine has
32 cycles, interleaving lookups from two packets. In the first
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8 cycles, the state machine reads the flow headers stored in
the two locations indicated by the two hashes for the first
packet. While waiting for the results of the lookups for the
first packet, the state machine issues read requests for the
flow headers using the second packet’s two hashes. In the
meantime, the results from the first packet’s read requests
are checked for a match. In the case of a hit, the data from
the hit address is read. The same is then done for the second
packet.

The results of both wildcard and exact-match lookups are
sent to an arbiter that decides which result to choose. Once
a decision is reached on the actions to take on a packet, the
counters for that flow entry are updated and the actions are
specified in new headers prepended at the beginning of the
packet by the Packet Editor.

The design allows more stages— OpenFlow Action stages—
to be added between the Output Port Lookup and the Out-
put Queues. These stages can handle optional packet mod-
ifications as specified by the actions in the newly appended
headers. It is possible to have multiple Action stages in se-
ries each doing one of the actions from the flow entry. This
allows adding more actions very easily as the specification
matures—the current implementation does not support any
packet modifications.

5. RESULTS

In this section we will first give performance results for our
OpenFlow switch. We will then compare the complexity of
the Output Port Lookup module for the OpenFlow Switch,
the IPv4 Router, the NIC, and the learning Ethernet switch.

5.1 Performance Results

Our NetFPGA OpenFlow switch implementation is eval-
uated in three dimensions: flow table size, forwarding rate,
and new flow insertion rate.

Table Size: While modern enterprise routers and switches
can have tables that are hundreds of thousands of entries
(our Gates building router—a Cisco Catalyst 6509—can fit
1M prefixes), the total number of active flows at any point
in time is much smaller. Data from the 8,000-host network
at LBL [20] indicates that the total number of active flows
never exceeded 1200 in any one second. Results collected
using Argus [21] from the Computer Science and Electrical
Engineering network which connects more than 5500 active
hosts are shown in Figure 6. We find that the maximum

Table 1: Summary of NetFPGA OpenFlow switch

performance.
Pkt Size | Forwarding Full Loop
(bytes) (Mbps) (flows/s)
64 1000 61K
512 1000 41K
1024 1000 28K
1518 1000 19K

number of flows active in any one second over a period of
7 days during the end of January, a busy time, only crosses
over 9000 once, and stays below 10000. The number of ac-
tive flows seen in both the LBL network and the Stanford
EE/CS network fit very easily into the NetFPGA OpenFlow
switch’s 32,000-entry exact match table.

It is worth noting that at one point, the number of active
flows recorded from a single IP address reached more than
50k active flows in one second for a period of two minutes.
However, almost all the flows consisted of two packets, one
that initiates the flow and one that ends it after 50 seconds.
The host that generated all these flows was contacting an
AFS server for backup. We suspect the first packet was
a request that timed out, while the second packet was the
timeout message. The large number of flows is due to the
way Argus counts UDP flows. Even when the flow consists
of only two packets spread out over 50 seconds, Argus still
counts them as active flows. We do not include the results
from this single host because this situation could have eas-
ily been remedied in an OpenFlow network using a single
wildcard table entry. A more optimized version of the im-
plementation can handle more than 64,000 entries, so even
without the wildcard entry, we would still be able to run the
network.

Forwarding: We ran two tests on our NetFPGA Open-
Flow switch. First, to test the hardware’s forwarding rate,
we inserted entries into the hardware’s flow table and ran
streams across all four ports of the NetFPGA. This was done
using a NetFPGA packet generator that can transmit pre-
determined packets at line-rate. A NetFPGA packet cap-
ture device audited the output from the OpenFlow switch
to make sure we received the expected packets. The for-
warding column in table 1 shows that our switch is capable
of running at the full line-rate across 64, 512, 1024, and 1518
packet sizes.

New Flow Insertion: Second, we tested the rate at
which new flows can be inserted into the hardware flow ta-
ble. This answered the following question: Assuming an
infinitely fast OpenFlow controller, at what rate can new
flows be coming into the switch before they start getting
dropped? The test was run by connecting the NetFPGA
switch to an external host that continuously generated new
flows. A simple controller implementing a static Ethernet
switch ® was run on the same machine as the switch so that
the local OpenFlow switch manager and the OpenFlow con-
troller could communicate through memory. We calculated
the rate at which new flows were received by the NetFPGA
and the rate at which new entries were created in the NetF-
PGA flow table. The results are summarized in the full
loop column of table 1.

The main bottleneck in the system is due to the PCI bus—

3i.e. it uses static routes
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Figure 6: Recent measurements obtained from the
Stanford EE and CS buildings. The top graph is the
total number of active flows per second seen on the
network over seven days, and the bottom graph is
the number of new flows that are seen every second
over the same seven days.

a single register read or write can take up to 1 us. Since there
is 1 register read and 10 register writes to insert a flow entry
into the hardware, it takes at least 11 us to insert an new
flow. To make matters worse, the packet is also re-injected
across the PCI bus via DMA into the hardware to be sent
out. Another factor that reduces flow insertion rate is the
high interrupt rate, especially with small packet sizes.

A more sophisticated hardware mechanism to mitigate the
problem can create flow headers from the packets automati-
cally and buffer them in the hardware so that if they need to
be added into the flow table, all that is needed is a single reg-
ister write. The hardware can also buffer packets and send
summarized packets up via the software to the controller
along with a pointer to the buffered packet. The OpenFlow
protocol [18] specifies the mechanism with which a controller
can ask a switch to inject a packet buffered locally on the
switch back into the data path. Interrupt mitigation tech-
niques can be used to reduce the interrupt rate.

The maximum new flow request rate seen in the Stanford
EE/CS network shown in the bottom of figure 6 was less
than 7000 flows/second, and this corresponds to the same
maximum seen in active flows and was identified as being
caused by an aggressive SSH troll. The rate at which new
flow requests are generated from Stanford’s network is well
within the capabilities of the simple unoptimized NetFPGA
OpenFlow switch implementation.

5.2 Complexity

To compare complexity, we look at the Output Port Lookup
module in isolation for each of the OpenFlow Switch, the
IPv4 router, the learning Ethernet switch, and the NIC. We
divide up the module into three main parts: Logic, Pri-
mary Lookup, and Secondary Lookup. For all four designs,
the Logic component contains no lookup logic or lookup ta-
bles. For the OpenFlow switch, the primary lookup is the
32,768-entry exact-match with its required hashing, while

the secondary lookup is the 32-entry wildcard match along
with the TCAM logic used. For the IPv4 router, the pri-
mary and secondary are the 1024-entry TCAM LPM with
its associated lookup table and 32-entry CAM ARP cache
lookups respectively. The Ethernet switch has only the 512-
entry CAM MAC table lookup as a primary lookup, while
the NIC has no lookups at all. The TCAM for the router was
implemented using SRL16e while the CAM for the Ethernet
switch as well as the CAM for the router’s ARP cache were
based on a dual-port BRAM implementation ([25], [24]).
Since the 36 Mbit SRAM for the OpenFlow exact-match
lookup is off-chip, it is not included in our results.

The build results for all four designs are summarized in
Table 2 below. These results were obtained using Xilinx’s
implementation tools from ISE9.1i Service Pack 3. We give
the results as LUT and DFF counts and Block RAMs used
on the Virtex-Ilpro, as well as a percentage of total LUT
utilization.

The implementation results suggest that by way of logic
utilization, an OpenFlow switch is between a basic IPv4
router and a basic Ethernet learning switch. A feature-
rich IP router or Ethernet switch, however, is much more
complex than the basic implementations we have. On the
other hand, a basic OpenFlow switch when combined with
the right OpenFlow controller can already handle many of a
complex router or switch’s additional features, such as access
control.

From discussions with contacts at several switch and router
vendors, we have concluded that a router with features sim-
ilar to the Gates building router uses around 5M logic gates
per port. This number is equivalent to our Logic-Only col-
umn, and includes the forwarding engine and switch fab-
ric. If we compare this number to those from the NetF-
PGA OpenFlow switch implementation, the NetFPGA TPv4
Router implementation, and the NetFPGA learning switch
implementation, we get the following results:

NetFPGA learning Ethernet switch : 141,885

NetFPGA IPv4 router : 515,802

NetFPGA OpenFlow switch : 167,668

Feature-rich router : 5,000,000

The logic utilization difference between a basic IPv4 router
and a feature-rich router is almost 10x. On the other hand,
the OpenFlow switch can provide many of the feature-rich
router’s functionality at 1/30 the logic gate cost.

It is difficult to compare the lookup technologies employed
in the implementations of the designs used in Table 2. This is
especially true since the results are based on a FPGA imple-
mentation where CAMs and TCAMs are not implemented in
the usual 13 transistor/cell way. In addition, the OpenFlow
switch’s lookup table stores active flow information whereas
a router or switch’s lookup table stores information on all
potentially active flows. To provide the same granularity
of control OpenFlow provides, we expect that a router or
switch’s forwarding table size will have to increase exponen-
tially with the number of hosts that connect through it. On
the other hand, we expect the size of an OpenFlow switch’s
forwarding table size to increase a little faster than linearly.

As for software, we note that the current open-source
implementation of OpenFlow uses 27378 lines of C code,



Table 2: Build results of the OpenFlow switch, the IPv4 router, the Learning Ethernet switch, and the NIC.

Function OpenFlow Switch IPv4 Router Ethernet Switch 4-port NIC
Logic-only 1179 LUTs, 850 DFFs 2874 LUTSs, 1245 DFFs 783 LUTs, 388 DFF's 38 LUTs, 8 DFFs

2 BRAMs, 3% Area 7 BRAMs, 6% Area 2 BRAMs, <1% Area 0 BRAMs, <1% Area
Primary 1881 LUTs, 1227 DFFs, 11125 LUTs, 2272 DFFs, 3267 LUTs, 748 DFFs, N/A

0 BRAMs, 5% Area 6 BRAMs, 60% Area 98 BRAMs, 10% Area N/A
Secondary | 7661 LUTs, 5501 DFFs, 623 LUTs, 391 DFFs, N/A N/A

16 BRAMs, 26% Area 7 BRAMs 2% Area N/A N/A

to Campus Backbon

é yozb
Catalyst 6509 {
e

é yoza
gb

1

Catalyst 6509
OpenFlow Enabled

_1OGbps
3Gbps
1Gbps

23 OpenFlow Enabled
HP Procurve switches

Figure 7: The OpenFlow deployment in the Gates
building will consist of 23 HP ProCurve switches
connected to two Cisco routers.

whereas our implementation of a simplified OSPF (PW-
OSPF [23]) uses 22395 lines of code both including com-
ments. On the other hand, full-featured router software such
as [0S [3], can reach millions of lines of code.

6. DEPLOYMENT

We will deploy both commercial OpenFlow switches and
NetFPGAs that can run as OpenFlow switches in two build-
ings at Stanford, as well as into the Internet2 backbone. At
Stanford, we will deploy modified HP ProCurve 5400 (model
numbers 5406z] and 5412z1) Ethernet switches [7] and Cisco
Catalyst 6500 series routers [2] to which experimental Open-
Flow support was added to allow researchers to run exper-
iments on the building’s network. We have also deployed
NetFPGAs in the Internet2 backbone allowing us to run
OpenFlow over a large network with traffic from around the
United States.

Stanford Deployment: Our Stanford Gates building
OpenFlow deployment is shown in Figure 7. The Cisco
routers connect 23 HP switches that in turn connect the
Gates offices and machines. gb1 is the main router while gb2
is used in case of a failure. Work is underway to implement
the management control for these OpenFlow switches. The
Stanford deployment has been used in a demo at SIGCOMM
2008—A Demonstration of Virtual Machine Mobility in an
OpenFlow Network.

Internet2 Deployment: The Internet2 NetFPGA de-
ployment consists of 8 Dell PowerEdge 2950 2u servers with
a NetFPGA installed. The machines are distributed in pairs

Internet2 —— ———internet2 PoP Carnegie
Stanford PoP Los B ! lwashington Mellon
University Angeles \ — University
= / f—T 7T 17—
o
= -

N
/E

N

Internet2
PoP New Princeton
York

Figure 8: The NetFPGAs in Internet2 are connected
in two parallel meshes. The Internet2 backbone de-
ployment of NetFPGA will allow us to run Open-
Flow across several university campuses.

to the following Internet2 PoPs: Los Angeles, Houston, New
York, and Washington D.C. The NetFPGAs are connected
in two parallel meshes—each NetFPGA connects to three
other NetFPGAs at the other PoPs with dedicated circuits.
The last NetFPGA port is connected to the Internet2 router
in the PoP, allowing connection back to one of Stanford,
Rice, Princeton, or Carnegie Mellon universities. In addi-
tion, a rack of 40 NetFPGA machines has been deployed
at Stanford with direct connection to the Los Angeles PoP
allowing further programmability and expansion of the net-
work. Figure 8 gives a diagram of the deployment. At the
time of writing, the NetFPGAs in Los Angeles and Houston
were installed, while the New York and Washington D.C.
installations were still underway.

7. RELATED WORK

Others have already proposed using centralized designs
for security and management. As was mentioned before,
OpenFlow is an abstraction of Ethane’s datapath [1]. A
prototype for an Ethane switch had been previously built
on an older version of NetFPGA [11]. This work uses a
more modular approach and implements OpenFlow, which
is more general and flexible than Ethane’s original datapath.

4D [5] advocates the division of the network architecture
into four components, the decision plane, the dissemination
plane, the discovery plane, and the data plane. Like Open-
Flow, 4D advocates centralization of the decision making in
the network. However, unlike OpenFlow, 4D does not pro-
vide fine-grained, per-flow control over the network. The
OpenFlow protocol can be viewed as providing 4D’s data
plane, discovery plane, and dissemination plane.

Molinero-Ferndndez and McKeown [14] suggested TCP
switching for implementing dynamic circuit switching in the
Internet to eliminate switch buffers and make it easier to



build all-optical routers and provide better services. While
TCP switching can be implemented with OpenFlow, Open-
Flow can do more. It removes the decision-making from the
datapath and delegates it to a central controller. Instead of
using the initial TCP SYN packet to establish a circuit, the
OpenFlow switch sends the SYN packet to the central con-
troller. In addition to making routing decisions, the central
controller can implement access control, accounting, decide
on a service level, etc. All these decisions are made once
for each flow in a central location as opposed to doing it
hop-by-hop as in the TCP switch case.

ATM [22] follows a similar pattern where a virtual circuit
is established across a network before packets traverse the
network. While similar in that respect, OpenFlow is cen-
tralized, and does not necessitate per-packet modifications.
OpenFlow uses the link, network, and transport layers to
define a flow, while ATM operates on a single layer, namely
the link layer. OpenFlow brings back the concept of a sim-
ple virtual circuit by using fine-grained flows. ATM switches
need hard state since a circuit is established once at the be-
ginning of a session, while OpenFlow switches can maintain
soft state since they only cache information from the con-
troller, and all packets of a flow are treated in the same
way.

Lockwood et al. ([10], [9]) have designed the Field Pro-
grammable Port Extender (FPX) platform to develop repro-
grammable and modular networking hardware. The FPX
platform had more FPGA resources and memory to handle
deep content-level processing of network traffic, whereas the
NetFPGA is optimized to be a low-cost teaching and proto-
typing platform. The interface between NetFPGA modules
are FIFO-based and are simpler than the Utopia-based ones
used in FPX. The open-source gateware and software pro-
vided for NetFPGA allows for a gentler learning curve of
hardware design for networking.

Click [8] implements a modular router datapath in soft-
ware. NetFPGA aims to do for networking in hardware
what Click did for networking in software — enabling inno-
vation by lowering the barrier to implementing and extend-
ing networking components. Whereas Click uses both push
and pull interfaces between modules, the NetFPGA refer-
ence pipeline uses only push. Click is not able to forward
packets at full-line rate on commodity hardware, whereas a
NetFPGA router can route at full-line rate across 4 1-Gbps
ports even using outdated hardware.

8. CONCLUSION

OpenFlow provides a simple way to innovate in your net-
work. It allows researchers to implement experimental pro-
tocols and run them over a production network alongside
production traffic. We have implemented OpenFlow on the
NetFPGA, a reprogrammable hardware platform for net-
working. Our implementation is capable of full line-rate
switching and can easily accommodate all the active flows in
a production network such as the Stanford University Gates
Building.

The OpenFlow implementation on the NetFPGA exposed
a few issues that designers should be aware of. The size of
the flow header entry—currently 240 bits for the NetFPGA
implementation—along with the actions for the entry can be
a significant bottleneck. This problem is exacerbated when
the packet is re-injected from the software into the hardware,
using the same communication channel—the PCI bus in this

case. A design that can buffer flow entries and packets in
hardware, and only send summaries to the controller can
help mitigate these effects. Despite these bottlenecks, the
NetFPGA implementation can handle the traffic seen on the
Stanford campus.

Some issues remain to be addressed as the protocol ma-
tures and the OpenFlow switch Type-1 is defined. These
include how to protect the controller or the switch from de-
nial of service attacks, how to manage an OpenFlow network
so that multiple controllers can be running, how to extend
OpenFlow to handle more than TCP/IP or UDP/IP traffic,
and how to handle broadcasts elegantly. Other issues such
as QoS and enabling dynamic circuit switching are still to
be decided on.

While OpenFlow obviously suffers a few shortcomings,
none of them are show-stoppers, and they allow the protocol
to be simple enough that it has already been implemented
in a few commercial switches and routers. We believe Open-
Flow enables a new type of networking research as well as
allowing researchers to run experimental protocols over real
deployments.
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