
MATH 337 SPRING 2013
HOMEWORK #13
DUE: 2 MAY 2013

1. Practice Questions

• 8.5 # 1-15 (odd)

• 8.6 # 1-11, 17-39 (odd)

2. Assignment Questions

• 8.5 # 2 (5.6.2), 14 (5.6.14) ,

• 8.6 # 2 (5.7.2), 14 (5.7.14), 18 (5.7.18)
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integer, then the second solution normally has a more complicated structure. In all
cases, though, it is possible to find at least one solution of the form (7) or (22); if r1
and r2 differ by an integer, this solution corresponds to the larger value of r . If there is
only one such solution, then the second solution involves a logarithmic term, just as for
the Euler equation when the roots of the characteristic equation are equal. The method
of reduction of order or some other procedure can be invoked to determine the second
solution in such cases. This is discussed in Sections 5.7 and 5.8.
If the roots of the indicial equation are complex, then they cannot be equal or differ

by an integer, so there are always two solutions of the form (7) or (22). Of course, these
solutions are complex-valued functions of x . However, as for the Euler equation, it is
possible to obtain real-valued solutions by taking the real and imaginary parts of the
complex solutions.
Finally, we mention a practical point. If P , Q, and R are polynomials, it is often

much better to work directly with Eq. (1) than with Eq. (3). This avoids the necessity
of expressing xQ(x)/P(x) and x2R(x)/P(x) as power series. For example, it is more
convenient to consider the equation

x(1+ x)y′′ + 2y′ + xy = 0

than to write it in the form

x2y′′ + 2x
1+ x

y′ + x2

1+ x
y = 0,

which would entail expanding 2x/(1+ x) and x2/(1+ x) in power series.

PROBLEMS In each of Problems 1 through 10 show that the given differential equation has a regular singular
point at x = 0. Determine the indicial equation, the recurrence relation, and the roots of the
indicial equation. Find the series solution (x > 0) corresponding to the larger root. If the roots
are unequal and do not differ by an integer, find the series solution corresponding to the smaller
root also.
1. 2xy′′ + y′ + xy = 0 2. x2y′′ + xy′ + (x2 − 1

9 )y = 0
3. xy′′ + y = 0 4. xy′′ + y′ − y = 0
5. 3x2y′′ + 2xy′ + x2y = 0 6. x2y′′ + xy′ + (x − 2)y = 0
7. xy′′ + (1− x)y′ − y = 0 8. 2x2y′′ + 3xy′ + (2x2 − 1)y = 0
9. x2y′′ − x(x + 3)y′ + (x + 3)y = 0 10. x2y′′ + (x2 + 1

4 )y = 0
11. The Legendre equation of order α is

(1− x2)y′′ − 2xy′ + α(α + 1)y = 0.

The solution of this equation near the ordinary point x = 0 was discussed in Problems 22
and 23 of Section 5.3. In Example 5 of Section 5.4 it was shown that x = ±1 are regular
singular points. Determine the indicial equation and its roots for the point x = 1. Find a
series solution in powers of x − 1 for x − 1 > 0.
Hint:Write 1+ x = 2+ (x − 1) and x = 1+ (x − 1). Alternatively, make the change of
variable x − 1 = t and determine a series solution in powers of t .

12. The Chebyshev equation is

(1− x2)y′′ − xy′ + α2y = 0,

where α is a constant; see Problem 10 of Section 5.3.
(a) Show that x = 1 and x = −1 are regular singular points, and find the exponents at
each of these singularities.
(b) Find two linearly independent solutions about x = 1.
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13. The Laguerre11 differential equation is

xy′′ + (1− x)y′ + λy = 0.

Show that x = 0 is a regular singular point. Determine the indicial equation, its roots, the
recurrence relation, and one solution (x > 0). Show that if λ = m, a positive integer, this
solution reduces to a polynomial. When properly normalized this polynomial is known as
the Laguerre polynomial, Lm(x).

14. The Bessel equation of order zero is

x2y′′ + xy′ + x2y = 0.

Show that x = 0 is a regular singular point; that the roots of the indicial equation are
r1 = r2 = 0; and that one solution for x > 0 is

J0(x) = 1+
∞
∑

n=1

(−1)nx2n

22n(n!)2
.

Show that the series converges for all x . The function J0 is known as the Bessel function
of the first kind of order zero.

15. Referring to Problem 14, use the method of reduction of order to show that the second
solution of the Bessel equation of order zero contains a logarithmic term.
Hint: If y2(x) = J0(x)v(x), then

y2(x) = J0(x)
∫

dx
x[J0(x)]

2 .

Find the first term in the series expansion of 1/x[J0(x)]
2.

16. The Bessel equation of order one is

x2y′′ + xy′ + (x2 − 1)y = 0.

(a) Show that x = 0 is a regular singular point; that the roots of the indicial equation are
r1 = 1 and r2 = −1; and that one solution for x > 0 is

J1(x) = x
2

∞
∑

n=0

(−1)nx2n

(n + 1)! n! 22n
.

Show that the series converges for all x . The function J1 is known as the Bessel function
of the first kind of order one.
(b) Show that it is impossible to determine a second solution of the form

x−1
∞
∑

n=0
bnx

n, x > 0.

5.7 Series Solutions near a Regular Singular Point, Part II
Now let us consider the general problem of determining a solution of the equation

L[y] = x2y′′ + x[xp(x)]y′ + [x2q(x)]y = 0, (1)

11Edmond Nicolas Laguerre (1834 –1886), a French geometer and analyst, studied the polynomials named for
him about 1879.
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for |x | < ρ, where ρ > 0 is the minimum of the radii of convergence of the power
series for xp(x) and x2q(x). Let r1 and r2 be the roots of the indicial equation

F(r) = r(r − 1) + p0r + q0 = 0,

with r1 ≥ r2 if r1 and r2 are real. Then in either of the intervals −ρ < x < 0 or
0 < x < ρ, there exists a solution of the form

y1(x) = |x |r1
[

1+
∞
∑

n=1
an(r1)x

n

]

, (21)

where the an(r1) are given by the recurrence relation (8) with a0 = 1 and r = r1.
If r1 − r2 is not zero or a positive integer, then in either of the intervals−ρ < x < 0

or 0 < x < ρ, there exists a second linearly independent solution of the form

y2(x) = |x |r2
[

1+
∞
∑

n=1
an(r2)x

n

]

. (22)

The an(r2) are also determined by the recurrence relation (8) with a0 = 1 and r = r2.
The power series in Eqs. (21) and (22) converge at least for |x | < ρ.
If r1 = r2, then the second solution is

y2(x) = y1(x) ln |x | + |x |r1
∞
∑

n=1
bn(r1)x

n. (23)

If r1 − r2 = N , a positive integer, then

y2(x) = ay1(x) ln |x | + |x |r2
[

1+
∞
∑

n=1
cn(r2)x

n

]

. (24)

The coefficients an(r1), bn(r1), cn(r2), and the constant a can be determined by
substituting the form of the series solutions for y in Eq. (1). The constant a may turn
out to be zero, in which case there is no logarithmic term in the solution (24). Each of
the series in Eqs. (23) and (24) converges at least for |x | < ρ and defines a function
that is analytic in some neighborhood of x = 0.

PROBLEMS In each of Problems 1 through 12 find all the regular singular points of the given differential
equation. Determine the indicial equation and the exponents at the singularity for each regular
singular point.
1. xy′′ + 2xy′ + 6ex y = 0 2. x2y′′ − x(2+ x)y′ + (2+ x2)y = 0
3. x(x − 1)y′′ + 6x2y′ + 3y = 0 4. y′′ + 4xy′ + 6y = 0
5. x2y′′ + 3(sin x)y′ − 2y = 0 6. 2x(x + 2)y′′ + y′ − xy = 0
7. x2y′′ + 1

2 (x + sin x)y′ + y = 0 8. (x + 1)2y′′ + 3(x2 − 1)y′ + 3y = 0
9. x2(1− x)y′′ − (1+ x)y′ + 2xy = 0
10. (x − 2)2(x + 2)y′′ + 2xy′ + 3(x − 2)y = 0
11. (4− x2)y′′ + 2xy′ + 3y = 0
12. x(x + 3)2y′′ − 2(x + 3)y′ − xy = 0

In each of Problems 13 through 17:
(a) Show that x = 0 is a regular singular point of the given differential equation.
(b) Find the exponents at the singular point x = 0.
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(c) Find the first three nonzero terms in each of two linearly independent solutions about
x = 0.

13. xy′′ + y′ − y = 0
14. xy′′ + 2xy′ + 6ex y = 0; see Problem 1
15. x(x − 1)y′′ + 6x2y′ + 3y = 0; see Problem 3
16. xy′′ + y = 0
17. x2y′′ + (sin x)y′ − (cos x)y = 0
18. Show that

(ln x)y′′ + 1
2 y

′ + y = 0

has a regular singular point at x = 1. Determine the roots of the indicial equation at x = 1.

Determine the first three nonzero terms in the series
∞
∑

n=0
an(x − 1)r+n corresponding to the

larger root. Take x − 1 > 0. What would you expect the radius of convergence of the series
to be?

19. In several problems in mathematical physics (for example, the Schrödinger equation for a
hydrogen atom) it is necessary to study the differential equation

x(1− x)y′′ + [γ − (1+ α + β)x]y′ − αβy = 0, (i)

where α, β, and γ are constants. This equation is known as the hypergeometric equation.
(a) Show that x = 0 is a regular singular point, and that the roots of the indicial equation
are 0 and 1− γ .
(b) Show that x = 1 is a regular singular point, and that the roots of the indicial equation
are 0 and γ − α − β.
(c) Assuming that 1− γ is not a positive integer, show that in the neighborhood of x = 0
one solution of (i) is

y1(x) = 1+ αβ

γ · 1!
x + α(α + 1)β(β + 1)

γ (γ + 1)2!
x2 + · · · .

What would you expect the radius of convergence of this series to be?
(d) Assuming that 1− γ is not an integer or zero, show that a second solution for 0 < x < 1
is

y2(x) = x1−γ
[

1+ (α − γ + 1)(β − γ + 1)
(2− γ )1!

x

+ (α − γ + 1)(α − γ + 2)(β − γ + 1)(β − γ + 2)
(2− γ )(3− γ )2!

x2 + · · ·
]

.

(e) Show that the point at infinity is a regular singular point, and that the roots of the
indicial equation are α and β. See Problem 21 of Section 5.4.

20. Consider the differential equation

x3y′′ + αxy′ + βy = 0,

where α and β are real constants and α $= 0.
(a) Show that x = 0 is an irregular singular point.

(b) By attempting to determine a solution of the form
∞
∑

n=0
anx

r+n , show that the indicial

equation for r is linear, and consequently there is only one formal solution of the assumed
form.
(c) Show that if β/α = −1, 0, 1, 2, . . . , then the formal series solution terminates and
therefore is an actual solution. For other values of β/α show that the formal series solution
has a zero radius of convergence, and so does not represent an actual solution in any
interval.


