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2 Outline for Topics Covered in Chapter 06 

• Definition of Frequent Itemsets 

• Applications of Frequent Itemsets 

• Association Rules 

• Finding Association Rules with 
High Confidence  

What is the 
Market-
Basket 
Model? 

• Representation of Market-Basket Data 

• Main Memory for Itemset Counting 

• Monotoncity of Itemsets 

• Tyranny of Counting Pairs 

• The A-Priori Algorithm and for All 
Frequent Itemsets 

Market-
Baskets and 
A-Priori Alg. 



3 Association Rule Discovery – The Market-Basket Model 

 Goal: Identify items frequently bought together 

 

 Approach: Process the sales data collected with 
barcode scanners to find dependencies among items 
• A classic rule: If one buys diaper and milk, then (s)he is likely 

to buy beer!!  

 

tran1 cust33 p2, p5, p8

tran2 cust45 p5, p8, p11

tran3 cust12 p1, p9

tran4 cust40 p5, p8, p11

tran5 cust12 p2, p9

tran6 cust12 p9

Rules Discovered:  
Products 5 and 8 are 

often bought together 

– Layout: Putting 6-pack next to diapers? 



4 The Market-Basket Model 

 A large set of items 
• e.g., things sold in a supermarket 

 

 A large set of baskets, 

   each is a small subset of items 
• e.g., things a customer buys in one transaction 

 

 A general many-many mapping (association) between 
two kinds of things 
• We look for connections among “items,” not “baskets” 

tran1 cust33 p2, p5, p8

tran2 cust45 p5, p8, p11

tran3 cust12 p1, p9

tran4 cust40 p5, p8, p11

tran5 cust12 p2, p9

tran6 cust12 p9



5 Association Rules – Approach 

 Given a set of baskets, 
we want to discover 
association rules 
• People who bought {p5} 

tend to buy {p8} 
 Web Marketing in Amazon 

 

 2 step approach: 
• Find frequent itemsets 

• Generate association rules 

 Input: 

 

 

 

 

 

 Output: 
• Discovered Rule: Product 5 

and 8 are likely to be 
bought together 

tran1 cust33 p2, p5, p8

tran2 cust45 p5, p8, p11

tran3 cust12 p1, p9

tran4 cust40 p5, p8, p11

tran5 cust12 p2, p9

tran6 cust12 p9



6 Applications Related to INSY – Healthcare  

 Baskets = patients; items = drugs & side-effects 
• Used to detect combinations of drugs that result in particular 

side-effects 

 

 But requires extension: absence of an item needs to be 
observed as well as presence.  

 

 
PID D1 D2 D3 D4 D5 D6 SE1 SE2 

242 Yes Yes Yes No No No No Yes 

231 No No Yes No No No No Yes 

339 No No No Yes Yes Yes Yes No 

157 No No No No No No No No 

638 No No Yes No Yes Yes Yes Yes 

247 No No No No No Yes No No 

241 No No No No Yes Yes Yes No 



7 Applications Related to INSY – Social Media Analysis 

Source: Figure from Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


8 Applications Related to INSY – Social Media Analysis 

Source: Figure from http://www.dailymail.co.uk/news/article-2269915/Facebook-map-shows-USA-divided-NFL--enclave-
Pittsburgh-fans-Oregon.html#axzz2K1yRIloN 

Using Facebook information, NYU PHd candidate Sean Taylor has generated a 
new series of maps showing the social and geographical breakdown of NFL fans 



9 Applications Related to INSY – Social Media-Like Analysis 

Source: video.ted.com/talk/podcast/2012G/None/MalteSpitz_2012G.mp4 

 



10 A Formal Definition for Frequent Itemsets 

 Simplest question: Find sets of items that appear 
together “frequently” in baskets 

 

 Support for itemset I: number of baskets containing 
all items in I 
• Often expressed as a fraction of  

    the total number of baskets 

 

 Given a support threshold s,  

   then sets of items that appear  

   in at least s baskets are called 

   frequent itemsets 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


11 Example: Frequent Itemsets 

 Items = {milk, coke, pepsi, beer, juice} 

 

 Minimum support = 3 baskets 

 B1 = {m, c, b}  B2 = {m, p, j}  

 B3 = {m, b}   B4= {c, j}  

 B5 = {m, p, b}  B6 = {m, c, b, j}  

 B7 = {c, b, j}   B8 = {b, c} 

 

 What are the frequent itemsets? 



12 A Formal Definition of Association Rules 

 Association Rules: If-then rules about the contents of 
baskets 

 

 {i1, i2,…,ik} → j means: “if a basket contains all of 
i1,…,ik then it is likely to contain j” 

 

 Confidence of this association rule is the probability of 
j given I = {i1,…,ik} 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


13 Finding Association Rules 

 Process: “all association rules with support ≥ s and 
confidence ≥ c.” Based on this definition, we can 
see that the process is really made of two steps:  

• Step 1: Find all frequent itemsets I  

 Generate all itemsets whose support  min support 

• Step 2: Rule Generation 

 Generate high confidence rules from each frequent 
itemset, where each rule is a binary partitioning of a 
frequent itemset 

 

 Frequent itemset generation is still computationally 
expensive 

 

 



14 Example: Association Rules – Confidence and Interest 

 Items = {milk, coke, pepsi, beer, juice} 
 

 Minimum support = 3 baskets 

 B1 = {m, c, b}  B2 = {m, p, j}  

 B3 = {m, c, b, n}  B4= {c, j}  

 B5 = {m, p, b}  B6 = {m, c, b, j}  

 B7 = {c, b, j}   B8 = {b, c} 
 

 Generate the association rules (s=3, c=0.75) 
• Frequent itemsets: 

 

• Generate Rules: 



15 Interesting Association Rules  Bonferroni’s Principle?? 

 Not all high-confidence rules are interesting  
• The rule X → milk may have high confidence for many itemsets 

X, because milk is just purchased very often (independent of X)  

 

 Interest of an association rule I → j: difference between 
its confidence and the fraction of baskets that contain j  

 

 
 Interesting rules are those with high positive or 

negative interest values  

 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


16 Compacting the Output: An Exercise 

 Maximal Frequent 

itemsets: no 
immediate 
superset is frequent 
 

 Closed itemsets: no 
immediate superset 
has the same count 
(count>0). 

Itemset Count 

A 4 

B 5 

C 3 

AB 4 

AC 2 

BC 3 

ABC 2 

For the above table, identify whether each of the following itemsets is frequent, 
maximal and/or closed. Use s≥ 3 to decide on whether an item is frequent or not 



17 Outline for Topics Covered in Chapter 06 

• Definition of Frequent Itemsets 

• Applications of Frequent Itemsets 

• Association Rules 

• Finding Association Rules with 
High Confidence  

What is the 
Market-
Basket 
Model? 

• Representation of Market-Basket Data 

• Main Memory for Itemset Counting 

• Monotoncity of Itemsets 

• Tyranny of Counting Pairs 

• The A-Priori Algorithm and for All 
Frequent Itemsets 

Market-
Baskets and 
A-Priori Alg. 



18 Main-Memory Bottlenecks 

 In many algorithms to find frequent itemsets we need 
to worry about how main memory is used. 
• As we read baskets, we need to count something, e.g., 

occurrences of pairs. 

• The number of different things we can count is limited by the 
main memory. 

• Swapping counts in/out is a disaster. 

 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


19 Finding Frequent Pairs 

 The hardest problem often turns out to be finding 
the frequent pairs of items {i1, i2}  

 

 We’ll concentrate on how to do that, then discuss 
extensions to finding frequent triples, etc. 

 

 The approach:  
• We always need to generate all the itemsets  

• But we would only like to count/keep track of those itemsets 
that in the end turn out to be frequent  

 

 



20 The Lattice of Itemsets 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Source: figure from  Shivnath Babu, Duke CPS196.3, Lecture Notes, see 
http://www.cs.duke.edu/courses/spring09/cps196.3/courseoutline.html 



21 Naïve Algorithm 

 Naïve approach to finding frequent pairs  

 

 Read file once, counting in main memory the 
occurrences of each pair:  
• From each basket of n items, generate its n(n-1)/2 pairs by two 

nested loops  

• Fails if (#items)2 exceeds main memory  

 

 Note: #items can be 100K (Wal-Mart) or 10B (Web 
pages)  
• Suppose 105 items, counts are 4-byte integers  

• Number of pairs of items: 105(105-1)/2 = 5*109  

• Therefore, 2*1010 (20 gigabytes) of memory needed  

 

 

 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


22 Details of Main-Memory Counting 

 There are two basic 
approaches: 
1. Count all item pairs, 

using a triangular matrix. 

2. Keep a table of triples [i, j, 
c] = the count of the pair 
of items {i,j } is c. 

 

 (1) requires only (say) 4 
bytes/pair; (2) requires 
12 bytes, but only for 
those pairs with >0 
counts. 

 

4 per pair 

 
12 per 

        occurring pair 

Method 1: 
Triangular 

Matrix 

Method 2: 
Triples 



23 The Triangular Matrix Approach 

 Number items 1,2,… 

 

 Keep pairs in the order {1,2}, {1,3},…, {1,n }, {2,3}, 
{2,4},…,{2,n }, {3,4},…, {3,n },…{n -1,n }. 

 

 Find pair {i, j} at the position    

(i –1)(n –i /2) + j – i. 

 

 Total number of pairs n (n –1)/2; total bytes about 2n2. 

Source: Slide Adapted from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference 



24 The Triples Approach 

 You need a hash table, with i  and j  as the key, to 
locate (i, j, c) triples efficiently. 
• Typically, the cost of the hash structure can be neglected. 

 

 Total bytes used is about 12p, where p is the number 
of pairs that actually occur. 
• Beats triangular matrix if at most 1/3 of possible pairs actually 

occur. 

 

Source: Slide Adapted from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference 



25 Insights/Limitations from the Previous Two Approaches 

 

Think/Pair/Share – Activity  



26 The A-Priori Algorithm 

 Key idea: monotonicity -  if a set of items appears at 
least s  times, so does every subset. 
• Contrapositive for pairs: if item i  does not appear in s  

baskets, then no pair including i  can appear in s  baskets. 

Found to be 
Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 
supersets 

Source: Figure Adapted from 
Shivnath Babu, Duke 

CPS196.3, Lecture Notes, see 
earlier reference 



27 Illustrating the A-priori Principle* 

 Consider the following market-basket data 

 
TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

* Example from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference 



28 Illustrating the A-priori Principle 

Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 

{Bread,Milk,Diaper} 3 

 

Items (1-itemsets) 

Pairs (2-itemsets) 
 
(No need to generate 
candidates involving Coke 
or Eggs) 

Triplets (3-itemsets) 
Minimum Support = 3 

If every subset is considered,  
 6C1 + 6C2 + 6C3 = 41 
With support-based pruning, 
 6 + 6 + 1 = 13 



29 Details of the A-Priori Algorithm 

 Pass 1: Read baskets and count in main memory the 
occurrences of each item. 
• Requires only memory proportional to #items. 

 

 Pass 2: Read baskets again and count in main memory 
only those pairs both of which were found in Pass 1 to 
be frequent. 
• Requires memory proportional to square of frequent items 

only. 

• Plus a list of the frequent items (so you know what must be 
counted)  

 
 

 
Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


30 Main Memory: Picture of the A-Priori 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


31 Detail for A-Priori 

 You can use the 
triangular matrix 
method with n  = 
number of frequent 
items. 
• Saves space compared with 

storing triples. 

 Trick: number frequent 
items 1,2,… and keep a 
table relating new 
numbers to original item 
numbers. 

31 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


32 

32 

Frequent Triples, Etc. 

 For each k, we construct two sets of    k –tuples: 
• Ck  = candidate k – tuples = those that might be frequent sets 

(support > s ) based on information from the pass for     k –1. 

• Lk  = the set of truly frequent k –tuples. 

C1 L1 C2 L2 C3 
Filter Filter Construct Construct 

First 
pass 

Second 
pass 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


33 Example 

 Hypothetical steps of the A-Priori algorithm  

 C1 = { {b} {c} {j} {m} {n} {p} }  

 Count the support of itemsets in C1  

 Prune non-frequent: L1 = { b, c, j, m }  

 Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }  

 Count the support of itemsets in C2  

 Prune non-frequent: L2 = { {b,m} {b,c} {c,m} {c,j} }  

 Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }  

 Count the support of itemsets in C3  

 Prune non-frequent: L3 = { {b,c,m} }  

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/

