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2 Compacting the Output: An Exercise 

 Maximal Frequent 
itemsets: no 
immediate 
superset is frequent 
 

 Closed itemsets: no 
immediate superset 
has the same count 
(count>0). 

Itemset Count 
A 4 
B 5 
C 3 

AB 4 
AC 2 
BC 3 

Maximal 
No 
No 
No 
Yes 
Yes 
Yes 

Closed 
No 
Yes 
No 
Yes 
No 
Yes 

For the above table, identify whether each of the following itemsets is frequent, 
maximal and/or closed. Use s≥ 3 to decide on whether an item is frequent or not 



3 Outline for Topics Covered in Chapter 06 

• Definition of Frequent Itemsets 
• Applications of Frequent Itemsets 
• Association Rules 
• Finding Association Rules with 

High Confidence  

What is the 
Market-
Basket 
Model? 

• Representation of Market-Basket Data 
• Main Memory for Itemset Counting 
• Monotoncity of Itemsets 
• Tyranny of Counting Pairs 
• The A-Priori Algorithm and for All 

Frequent Itemsets 

Market-
Baskets and 
A-Priori Alg. 



4 Main-Memory Bottlenecks 

 In many algorithms to find frequent itemsets we need 
to worry about how main memory is used. 
• As we read baskets, we need to count something, e.g., 

occurrences of pairs. 
• The number of different things we can count is limited by the 

main memory. 
• Swapping counts in/out is a disaster. 
 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


5 Finding Frequent Pairs 

 The hardest problem often turns out to be finding 
the frequent pairs of items {i1, i2}  

 
 We’ll concentrate on how to do that, then discuss 

extensions to finding frequent triples, etc. 
 
 The approach:  

• We always need to generate all the itemsets  
• But we would only like to count/keep track of those itemsets 

that in the end turn out to be frequent  
 
 



6 The Lattice of Itemsets 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Source: figure from  Shivnath Babu, Duke CPS196.3, Lecture Notes, see 
http://www.cs.duke.edu/courses/spring09/cps196.3/courseoutline.html 



7 Naïve Algorithm 

 Naïve approach to finding frequent pairs  
 
 Read file once, counting in main memory the 

occurrences of each pair:  
• From each basket of n items, generate its n(n-1)/2 pairs by two 

nested loops  
• Fails if (#items)2 exceeds main memory  

 
 Note: #items can be 100K (Wal-Mart) or 10B (Web 

pages)  
• Suppose 105 items, counts are 4-byte integers  
• Number of pairs of items: 105(105-1)/2 = 5*109  
• Therefore, 2*1010 (20 gigabytes) of memory needed  

 
 

 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


8 Details of Main-Memory Counting 

 There are two basic 
approaches: 
1. Count all item pairs, 

using a triangular matrix. 
2. Keep a table of triples [i, j, 

c] = the count of the pair 
of items {i,j } is c. 

 
 (1) requires only (say) 4 

bytes/pair; (2) requires 
12 bytes, but only for 
those pairs with >0 
counts. 
 

4 per pair 

 
12 per 

        occurring pair 

Method 1: 
Triangular 

Matrix 

Method 2: 
Triples 

 



9 The Triangular Matrix Approach 

 Number items 1,2,… 
 
 Keep pairs in the order {1,2}, {1,3},…, {1,n }, {2,3}, 

{2,4},…,{2,n }, {3,4},…, {3,n },…{n -1,n }. 
 
 Find pair {i, j} at the position    

(i –1)(n –i /2) + j – i. 
 
 Total number of pairs n (n –1)/2; total bytes about 2n2. 

Source: Slide Adapted from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference 



10 The Triples Approach 

 You need a hash table, with i  and j  as the key, to 
locate (i, j, c) triples efficiently. 
• Typically, the cost of the hash structure can be neglected. 
 
 Total bytes used is about 12p, where p is the number 

of pairs that actually occur. 
• Beats triangular matrix if at most 1/3 of possible pairs actually 

occur. 
 

Source: Slide Adapted from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference 



11 Insights/Limitations from the Previous Two Approaches 

 

Think/Pair/Share – Activity  



12 The A-Priori Algorithm 

 Key idea: monotonicity -  if a set of items appears at 
least s  times, so does every subset. 
• Contrapositive for pairs: if item i  does not appear in s  

baskets, then no pair including i  can appear in s  baskets. 

Found to be 
Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 
supersets 

Source: Figure Adapted from 
Shivnath Babu, Duke 

CPS196.3, Lecture Notes, see 
earlier reference 



13 Illustrating the A-priori Principle* 

 Consider the following market-basket data 
 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

* Example from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference 



14 Illustrating the A-priori Principle 

Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 
{Bread,Milk,Diaper} 3 
 

Items (1-itemsets) 

Pairs (2-itemsets) 
 
(No need to generate 
candidates involving Coke 
or Eggs) 

Triplets (3-itemsets) 
Minimum Support = 3 

If every subset is considered,  
 6C1 + 6C2 + 6C3 = 41 
With support-based pruning, 
 6 + 6 + 1 = 13 



15 Details of the A-Priori Algorithm 

 Pass 1: Read baskets and count in main memory the 
occurrences of each item. 
• Requires only memory proportional to #items. 
 
 Pass 2: Read baskets again and count in main memory 

only those pairs both of which were found in Pass 1 to 
be frequent. 
• Requires memory proportional to square of frequent items 

only. 
• Plus a list of the frequent items (so you know what must be 

counted)  
 

 
 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


16 Main Memory: Picture of the A-Priori 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


17 

17 

Frequent Triples, Etc. 

 For each k, we construct two sets of    k –tuples: 
• Ck  = candidate k – tuples = those that might be frequent sets 

(support > s ) based on information from the pass for     k –1. 
• Lk  = the set of truly frequent k –tuples. 

C1 L1 C2 L2 C3 Filter Filter Construct Construct 

First 
pass 

Second 
pass 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


18 Example 

 Hypothetical steps of the A-Priori algorithm  
 C1 = { {b} {c} {j} {m} {n} {p} }  
 Count the support of itemsets in C1  
 Prune non-frequent: L1 = { b, c, j, m }  
 Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }  
 Count the support of itemsets in C2  
 Prune non-frequent: L2 = { {b,m} {b,c} {c,m} {c,j} }  
 Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }  
 Count the support of itemsets in C3  
 Prune non-frequent: L3 = { {b,c,m} }  

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


19 Using Software for Generating Association Rules - Patrick 

 A demonstration on how to generate association rules 
using software  
 



20 

Chapter 03: 
Finding Similar Items 



21 Some Introductory Remarks – What is “similar”? 

Source: Figure from James Hays, Alexei A. Efros. Scene Completion Using Millions of Photographs. ACM Transactions on 
Graphics (SIGGRAPH 2007). August 2007, vol. 26, No. 3.  http://graphics.cs.cmu.edu/projects/scene-completion/ 



22 One Application of Similarity 

Source: Figure from James Hays, Alexei A. Efros. Scene Completion Using Millions of Photographs. ACM Transactions on 
Graphics (SIGGRAPH 2007). August 2007, vol. 26, No. 3.  http://graphics.cs.cmu.edu/projects/scene-completion/ 



23 An Industrial Engineering Application of Similarity 

 Web Mining: Detect 
duplicate pages and 
mirror sites to improve 
search efficiency. 
 
 Manufacturing: Detect 

data redundancy to 
increase the efficiency of 
the quality assessment 
• Example: Door gap 

Decision on the number of sensors for detecting a frequent defect in 
manufacturing operations (true example) 

 



24 So How is Similarity and Association Different? 

 They are definitely related concepts. However, there is 
a relatively small difference between them  
 
 Book Definition: “the problem of finding frequent 

itemsets differs from the similarity search…” 
• In frequent itemsets, we are interested in the absolute # of 

baskets that contain a particular set of items 
• For similarity, we want items that have a large fraction of their 

basket in common, even if the absolute # of baskets is small. 
 
 IE take on the difference?? – see next slide  



25 So How is Similarity and Association Different? 

Similarity Association Rules 

Sensors 1&2 providing 
redundant information to 

detect a certain fault 

If a strong association is present 
between the 3D scanner and the 
CMM, it may be possible to infer 

the optimal placement for gap 
measurements from inherent 
associations within the data. 
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