Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 09: Association Rules and Similarity

SAMUEL GINN COLLEGE OF ENGINEERING

Department of Industrial and Systems Engineering

Spring 13

Compacting the Output: An Exercise

- Maximal Frequent

 itemsets: no
 immediate
 superset is frequent
- Closed itemsets: no immediate superset has the same count (count>0).

Itemset	Count	Maximal	Closed
А	4	No	No
В	5	No	Yes
С	3	No	No
AB	4	Yes	Yes
AC	2	Yes	No
BC	3	Yes	Yes

For the above table, identify whether each of the following itemsets is frequent, maximal and/or closed. Use $s \ge 3$ to decide on whether an item is frequent or not

Outline for Topics Covered in Chapter 06

What is the Market-Basket Model?

- Definition of Frequent Itemsets
- Applications of Frequent Itemsets
- Association Rules
- Finding Association Rules with High Confidence

Market-Baskets and A-Priori Alg.

- Representation of Market-Basket Data
- Main Memory for Itemset Counting
- Monotoncity of Itemsets
- Tyranny of Counting Pairs
- The A-Priori Algorithm and for All Frequent Itemsets

Main-Memory Bottlenecks

- In many algorithms to find frequent itemsets we need to worry about how main memory is used.
 - As we read baskets, we need to count something, e.g., occurrences of pairs.
 - The number of different things we can count is limited by the main memory.
 - Swapping counts in/out is a disaster.

Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items {i₁, i₂}
- We'll concentrate on how to do that, then discuss extensions to finding frequent triples, etc.
- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count/keep track of those itemsets that in the end turn out to be frequent

The Lattice of Itemsets

Source: figure from Shivnath Babu, Duke CPS196.3, Lecture Notes, see http://www.cs.duke.edu/courses/spring09/cps196.3/courseoutline.html

6

Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its n(n-1)/2 pairs by two nested loops
 - Fails if (#items)² exceeds main memory
- Note: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10⁵ items, counts are 4-byte integers
 - Number of pairs of items: $10^{5}(10^{5}-1)/2 = 5*10^{9}$
 - Therefore, 2*10¹⁰ (20 gigabytes) of memory needed

Details of Main-Memory Counting

- There are two basic approaches:
 - 1. Count all item pairs, using a triangular matrix.
 - 2. Keep a table of triples [i, j, c] = the count of the pair of items {i,j } is c.
- (1) requires only (say) 4 bytes/pair; (2) requires 12 bytes, but only for those pairs with >0 counts.

The Triangular Matrix Approach

- Number items 1,2,...
- Keep pairs in the order {1,2}, {1,3},..., {1,n}, {2,3}, {2,4},..., {2,n}, {3,4},..., {3,n},...{n-1,n}.
- Find pair $\{i, j\}$ at the position (i - 1)(n - i/2) + j - i.
- Total number of pairs n (n 1)/2; total bytes about $2n^2$.

Source: Slide Adapted from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference

The Triples Approach

- You need a hash table, with *i* and *j* as the key, to locate (*i*, *j*, *c*) triples efficiently.
 - Typically, the cost of the hash structure can be neglected.
- Total bytes used is about 12*p*, where *p* is the number of pairs that actually occur.
 - Beats triangular matrix if at most 1/3 of possible pairs actually occur.

Source: Slide Adapted from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference

Insights/Limitations from the Previous Two Approaches 11

Think/Pair/Share – Activity ©

The A-Priori Algorithm

- Key idea: *monotonicity* if a set of items appears at least *s* times, so does every subset.
 - **Contrapositive for pairs:** if item *i* does not appear in *s* baskets, then no pair including *i* can appear in *s* baskets.

Illustrating the A-priori Principle*

Consider the following market-basket data

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

* Example from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference

Illustrating the A-priori Principle

Items (1-itemsets)

	-
Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3
	\$

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Triplets (3-itemsets)

Minimum Support = 3

If every subset is considered, ${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$ With support-based pruning, 6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

Details of the A-Priori Algorithm

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to #items.
- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
 - Requires memory proportional to square of frequent items only.
 - Plus a list of the frequent items (so you know what must be counted)

Main Memory: Picture of the A-Priori

Frequent Triples, Etc.

- For each *k*, we construct two sets of *k* –tuples:
 - C_k = candidate k tuples = those that might be frequent sets (support $\geq s$) based on information from the pass for k-1.
 - L_k = the set of truly frequent *k* –tuples.

Example

- Hypothetical steps of the A-Priori algorithm
- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C₁
- Prune non-frequent: L₁ = { b, c, j, m }
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in _{C2}
- Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C₃
- Prune non-frequent: L₃ = { {b,c,m} }

Using Software for Generating Association Rules - Patrick¹⁹

 A demonstration on how to generate association rules using software ⁽²⁾

Chapter 03: Finding Similar Items

Some Introductory Remarks – What is "similar"?

Source: Figure from James Hays, Alexei A. Efros. Scene Completion Using Millions of Photographs. ACM Transactions on Graphics (SIGGRAPH 2007). August 2007, vol. 26, No. 3. http://graphics.cs.cmu.edu/projects/scene-completion/

One Application of Similarity

Source: Figure from James Hays, Alexei A. Efros. Scene Completion Using Millions of Photographs. ACM Transactions on Graphics (SIGGRAPH 2007). August 2007, vol. 26, No. 3. http://graphics.cs.cmu.edu/projects/scene-completion/

An Industrial Engineering Application of Similarity

- Web Mining: Detect duplicate pages and mirror sites to improve search efficiency.
- Manufacturing: Detect data redundancy to increase the efficiency of the quality assessment
 - Example: Door gap

Decision on the number of sensors for detecting a frequent defect in manufacturing operations (true example)

So How is Similarity and Association Different?

- They are definitely related concepts. However, there is a relatively small difference between them ⁽³⁾
- **Book Definition**: "the problem of finding frequent itemsets differs from the similarity search..."
 - In frequent itemsets, we are interested in the absolute # of baskets that contain a particular set of items
 - For similarity, we want items that have a large fraction of their basket in common, even if the absolute # of baskets is small.
- IE take on the difference?? see next slide ☺

So How is Similarity and Association Different?

Similarity

Sensors 1&2 providing redundant information to detect a certain fault

Association Rules

If a strong association is present between the 3D scanner and the CMM, it may be possible to infer the optimal placement for gap measurements from inherent associations within the <u>data</u>.

Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 09: Association Rules and Similarity

SAMUEL GINN COLLEGE OF ENGINEERING

Department of Industrial and Systems Engineering

Spring 13