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Compacting the Output: An Exercise 2

= Maximal Frequent

o oema
' A 4 No No

immediate B - No Ves
superset is frequent C 3 No No
AB 4 Yes Yes
= (Closed itemsets: no AC 2 Yes No
immediate superset BC 3 Yes Yes
has the same count
(count>0).

For the above table, identify whether each of the following itemsets is frequent,
maximal and/or closed. Use s= 3 to decide on whether an item is frequent or not



Outline for Topics Covered in Chapter 06

What is the
Market-
Basket
Model?

Market-
Baskets and
A-Priori Alg.

Definition of Frequent Itemsets
Applications of Frequent Itemsets
Association Rules

Finding Association Rules with
High Confidence




Main-Memory Bottlenecks 4

* In many algorithms to find frequent itemsets we need
to worry about how main memory is used.

° As we read baskets, we need to count something, e.g.,
occurrences of pairs.

* The number of different things we can count is limited by the
main memory.

° Swapping counts in/out is a disaster.

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



http://cs246.stanford.edu/

Finding Frequent Pairs 5

= The hardest problem often turns out to be finding
the frequent pairs of items {i,, i,}

= We'll concentrate on how to do that, then discuss
extensions to finding frequent triples, etc.

= The approach:
° We always need to generate all the itemsets

° But we would only like to count/keep track of those itemsets
that in the end turn out to be frequent



The Lattice of Itemsets

Source: figure from Shivnath Babu, Duke CPS196.3, Lecture Notes, see
http:/ /www.cs.duke.edu/courses/spring09/cps196.3 / courseoutline.html




Naive Algorithm 7

= Naive approach to finding frequent pairs

= Read file once, counting in main memory the
occurrences of each pair:

° From each basket of n items, generate its n(n-1)/2 pairs by two
nested loops

* Fails if (#items)? exceeds main memory

= Note: #items can be 100K (Wal-Mart) or 10B (Web
pages)

* Suppose 10° items, counts are 4-byte integers
* Number of pairs of items: 10°(10°-1)/2 = 5*10°
* Therefore, 2¥10% (20 gigabytes) of memory needed

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



http://cs246.stanford.edu/

Details of Main-Memory Counting 8

= There are two basic
1. Count all item pairs, Triangular
using a triangular matrix. _ Matrix
i .. 4 per pair
2. Keep a table of triples [i, j,

c| = the count of the pair
of items {i,j } is c.

= (1) requir.es only (say) 4 o Method -
bytes/pair; (2) requires o5 ° Triples
12 bytes, but only for ® 12per
those pairs with >0 agcurringspair
counts.



" The Triangular Matrix Approach 9

= Number items 1,2, ...

= Keep pairs in the order {1,2}, {1,3},..., {I,n }, {2,3},
{2/4}/ .o 'I{Zln }/ {3/4}/ ceey {3,7/[ }/ .o {n _lln }

= Find pair {;, j} at the position
i-1)n-1/2)+j]-1.

» Total number of pairs n (n -1)/2; total bytes about 2n2.

Source: Slide Adapted from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference



The Triples Approach 10

* You need a hash table, withi and; as the key, to
locate (3, j, c) triples efficiently.
* Typically, the cost of the hash structure can be neglected.

= Total bytes used is about 12p, where p is the number
of pairs that actually occur.

° Beats triangular matrix if at most 1/3 of possible pairs actually
occur.

Source: Slide Adapted from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference



Insights/Limitations from the Previous Two Approaches 11

Think/Pair/Share - Activity ©



The A-Priori Algorithm 12

= Key idea: monotonicity - if a set of items appears at
least s times, so does every subset.

* Contrapositive for pairs: if item i does not appear in s
baskets, then no pair including i can appear in s baskets.

Found to be {
Infrequent \

Source: Figure Adapted from
Shivnath Babu, Duke
CPS196.3, Lecture Notes, see
\\\\\ earlier reference

Pruned
supersets ~<




lllustrating the A-priori Principle* 13

= Consider the following market-basket data

TID Iltems

Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

Ol | W| N| -

* Example from Shivnath Babu, Duke CPS196.3, Lecture Notes, see earlier reference



lllustrating the A-priori Principle 14

ltem Count | Items (1-itemsets)
Bread 4
\ e
Milk 4 ltemset Count | Pairs (2-itemsets)
HEEh 3 {Bread,Milk} 3
Rl (No need to generate
{Bread,Diaper} 3 candidates involving Coke
{Milk,Beer} 2 or Eggs)
{Milk,Diaper} 3
— {Beer,Diaper} 3
Minimum Support = 3 N Triplets (3-itemsets)
If every subset is considered, ltemset Count
6C, + 6C, + 6C, = 41 {Bread,Milk,Diaper} 3
With support-based pruning,
6+6+1=13




Details of the A-Priori Algorithm 15

= Pass 1: Read baskets and count in main memory the
occurrences of each item.
* Requires only memory proportional to #items.

= Pass 2: Read baskets again and count in main memory
only those pairs both of which were found in Pass 1 to
be frequent.

* Requires memory proportional to square of frequent items
only.

° Plus a list of the frequent items (so you know what must be
counted)

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



http://cs246.stanford.edu/

Main Memory: Picture of the A-Priori 16

ltem counts Frequent items

Counts of
pairs of
frequent items
(candidate
pairs)

Main memory

Pass 1 Pass 2

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



http://cs246.stanford.edu/

Frequent Triples, Etc. 17

= For each k, we construct two sets of k -tuples:

° C, =candidate k - tuples = those that might be frequent sets
(support > s ) based on information from the pass for k -1.

° L, =the set of truly frequent k -tuples.

C, Filter L, Construct —~C, — Filter L, —* Construct —~ C, —
First Second
pass pass

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



http://cs246.stanford.edu/

Example 18

= Hypothetical steps of the A-Priori algorithm

+ C, = { {b} {c} {j} fm} {n} {p} }

= Count the support of itemsets in C;

* Prune non-frequent: L, ={b, ¢,j, m }

+ Generate C, = { {b,c} {bjj} {b,m} {c,j} {cm} fjm}}
= Count the support of itemsets in -,

* Prune non-frequent: L, = { {b,m} {b,c} {cm} {c,j} }
= Generate C; = { {b,c;m} {b,c,j} {b,m,j} {c,m,j} }

= Count the support of itemsets in C,

* Prune non-frequent: L = { {b,c,;m} }

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu


http://cs246.stanford.edu/

Using Software for Generating Association Rules - Patrick 19

= A demonstration on how to generate association rules
using software ©
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20

Chapter 03:
Finding Similar Items



Some Introductory Remarks — What is “similar’?

Source: Figure from James Hays, Alexei A. Efros. Scene Completion Using Millions of Photographs. ACM Transactions on
Graphics (SIGGRAPH 2007). August 2007, vol. 26, No. 3. http:/ /graphics.cs.cmu.edu/ projects/scene-completion/




One Application of Similarity 22

Edge Orientation

Input image Scene Descriptor

o i T R —
T =g
] i i = |

Context matching
20 completions + blending 200 matches

Source: Figure from James Hays, Alexei A. Efros. Scene Completion Using Millions of Photographs. ACM Transactions on
Graphics (SIGGRAPH 2007). August 2007, vol. 26, No. 3. http:/ /graphics.cs.cmu.edu/ projects/scene-completion/




An Industrial Engineering Application of Similarity 23

= Web Mining: Detect
du.lphcat.e pages and sz ,
mirror sites to improve : S H-m@!/

search efficiency.

* Manufacturing: Detect
data redundancy to

increase the efficiency of Efj—":—' —
the quality assessment ———a g
* Example: Door gap 7 8

Decision on the number of sensors for detecting a frequent defect in
manufacturing operations (true example)



So How is Similarity and Association Different? 24

= They are definitely related concepts. However, there is
a relatively small difference between them ©

* Book Definition: “the problem of finding frequent
itemsets differs from the similarity search...”

° In frequent itemsets, we are interested in the absolute # of
baskets that contain a particular set of items

° For similarity, we want items that have a large fraction of their
basket in common, even if the absolute # of baskets is small.

» [E take on the difference?? - see next slide ©



So How is Similarity and Association Different? 25

Similarity Association Rules
N ==~
7 r
-,
< N *a
‘ " — _—._;:"-;h
o Qa

Sensors 1&2 providing If a strong association is present
redundant information to between the 3D scanner and the
detect a certain fault CMM,, it may be possible to infer

the optimal placement for gap
measurements from inherent
associations within the data.
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