Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 10: Similarity of Sets (LSH)

SAMUEL GINN COLLEGE OF ENGINEERING

Outline for Topics Covered in Chapter 03 (3.1 \rightarrow 3.4)

Applications of Near-Neighbor Search

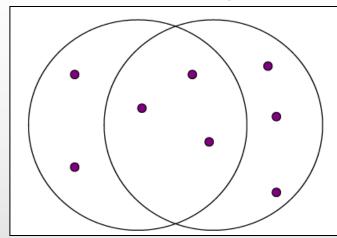
- Jaccard Similarity of Sets
- Similarity of Documents
- Collaborative Filtering

Locality-Sensitive Hashing

- Shingling
- Minhashing
- LSH for Minhash Signatures
- Combining the Techniques

How do we Define Similarity?

- Typically, we want to have items that have common features → we use this to say there are similar ☺
- The Jaccard Similarity of two sets is:
 - $Sim(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$
- The Jaccard Distance between sets is 1 minus their Jaccard similarity: $d(C_1, C_2) = 1 |C_1 \cap C_2| / |C_1 \cup C_2|$



3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

How does this Concept Relate to "Big Data" Analytics?

- Goal: Finding textually similar documents in a collection of news articles or web pages
 - Character-level similarity vs. similar meaning?
- Two levels of similarity:
 - Exactness: Easy, character-by-character comparison
 - Near duplicates: More involved; topic of today's class
- Typical applications in Big Data Analytics:
 - Plagiarism detection
 - Articles from the same source
 - Collaborative filtering

Outline for Topics Covered in Chapter 03 (3.1 \rightarrow 3.4)

Applications of Near-Neighbor Search

- Jaccard Similarity of Sets
- Similarity of Documents
- Collaborative Filtering

Locality-Sensitive Hashing

- Shingling
- Minhashing
- LSH for Minhash Signatures
- Combining the Techniques

Problem Description for Finding Similar Documents

Problem Statement:

• Given a large number (N in the millions or billions) of text documents, find pairs that are "near duplicates"

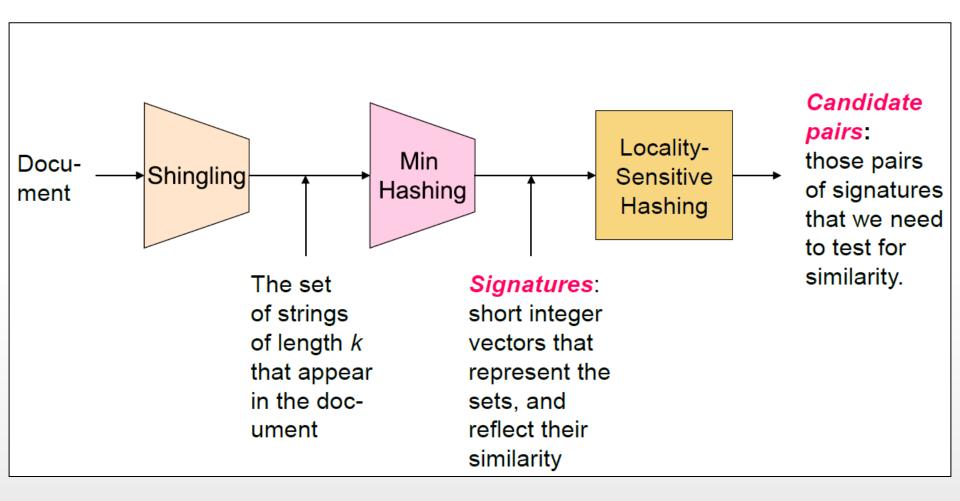
Issues:

- Many small pieces of one doc can appear out of order in another
- Too many docs to compare all pairs
- Docs are so large or so many that they cannot fit in main memory

The Step-by-Step Guideline for Finding Similar Documents 7

- **Shingling**: Convert documents, emails, etc., to sets of short strings that appear within it
- Minhashing: Convert large sets to short signatures, while preserving similarity
- Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents

The Step-by-Step Guideline for Finding Similar Documents 8



Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

Shingling - What is Shingling?

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears within the document
 - Tokens can be characters, words or something else, depending on application
 - Assume tokens = characters for reading the book examples
- Example: k=2; D_1 = abcab
 - Set of 2-shingles: S(D1)={ab, bc, ca}
 - Option: Shingles as a bag
- Represent a doc by the set of hash values of its kshingles

How do we pick *k*?

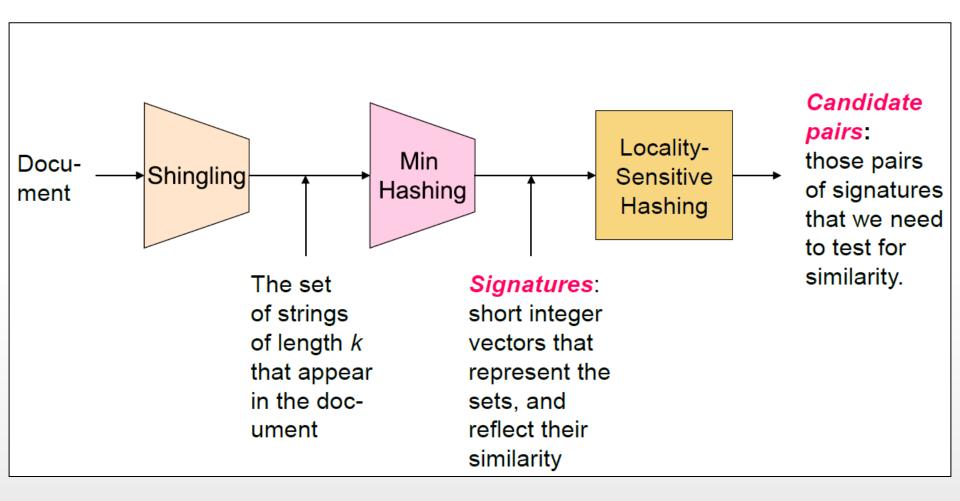
Similarity Metric for Shingles

- Document D_1 = set of k-shingles C_1 = $S(D_1)$
- Equivalently, each document is a 0/1 vector in the space of *k*-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:
 - $Sim(D1, D2) = |C1 \cap C2| / |C1 \cup C2|$
- Assumption: Documents that have lots of shingles in common have similar text, even if the text appears in different order

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N=1 million documents
- Naïvely, we'd have to compute pairwaise Jaccard similarites for every pair of docs

The Step-by-Step Guideline for Finding Similar Documents 12



Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

A Side Note: The Characteristic Matrix

- Properties of the Matrix:
 - Rows = elements of the universal set
 - Columns = sets
- 1 if and only if the token is a member of the set
- Column similarity is the Jaccard similarity of the sets of their rows with 1
- Typical matrix is sparse

A Side Note: The Characteristic Matrix - Exercise

- Suppose that we have the following sets:
 - Universal set {a, b, c, d, e}.
 - $S1 = \{a, d\}, S2 = \{c\}, S3 = \{b, d, e\}, and S4 = \{a, c, d\}.$
- What is the *characteristic matrix* for this problem? [©]

Outline: Finding Similar Columns

- So far:
 - Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next Goal: Find similar columns
- Approach:
- 1. Signatures of columns: small summaries of columns
- 2. Examine pairs of signatures to find similar columns –Essential property: Similarities of signatures & columns are related
- 3. Optional: check that columns with similar sigs. are really similar
- Warnings:
 - Comparing all pairs may take too long: job for LSH/Minhash

Minhashing

- Imagine the rows of the boolean matrix permuted under **random permutation** π
- Define a "hash" function $h_{\pi}(C)$ = the number of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(C) = min \pi(C)$$

• Use several (e.g., 100) independent hash functions to create a signature of a column

Minhashing – An Example

Suppose we pick the order of rows *beadc*. This permutation defines a minhash fn h that maps sets to rows. Compute the minhash value for all S according to h (i.e. for S_1 , S_2 , S_3 , and S_4).

Element	S_1	S_2	S_3	S_4
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Note that: It is typical to replace the letters naming the rows by integers 0, 1, 2, etc.

Minhashing and Jaccard Similarity - A Surprising Property

- There is a remarkable connection between minhashing and Jaccard similarity of the sets that are minhashed.
 - The probability that the minhash function for a random permutation of rows produces the same value for two sets equals the Jaccard similarity of those sets.
- To see why, check p. 80 in the book ©

Minhash Signatures – An Example

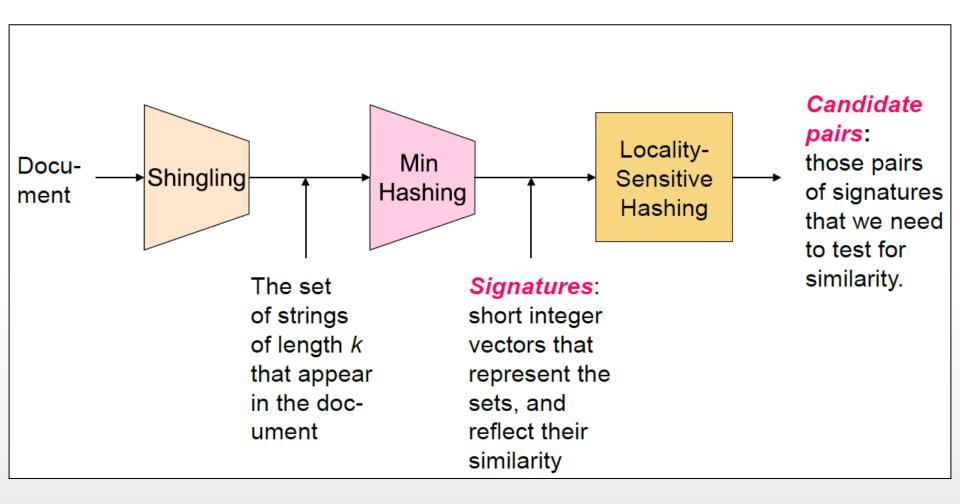
Using the new indices, let us return the signature matrix using these two hash functions ©

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
I	1	ı	I	1	l .	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Similarity for Signatures

- We know: $\Pr[h_{\pi}(C1) = h_{\pi}(C2)] = sim(C1, C2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures

The Step-by-Step Guideline for Finding Similar Documents 21



Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

LSH - General Idea

- **Goal:** Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- **LSH** General idea: Use a function f(x,y) that tells whether x and y is a **candidate pair**: a pair of elements whose similarity must be evaluated
- For minhash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

LSH - General Idea

- Pick a similarity threshold s, a fraction < 1
- Columns x and y of M are a **candidate pair** if their signatures agree on at least fraction s of their rows: M(i, x) = M(i, y) for at least frac. s values of i
- Note: We expect documents *x* and *y* to have the same similarity as their signatures (see previous slides)

Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 10: Similarity of Sets (LSH)

SAMUEL GINN COLLEGE OF ENGINEERING