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Refresher: Big Data Analytics Based on Types of Data 2
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Refresher: High Dimensional Data 3

= Given a cloud of data points, we want to understand
their underlying structure (what do we mean by that?)

Source: http:/ /www.cs.toronto.edu/~laurens/drtoronto/ Dimensionality_Reduction_%40_Toronto.html



Refresher: Locality Sensitive Hashing 4
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Steps for Locality Sensitive Hashing:

1. Shingling: convert docs to sets

2. Minhashing: convert large sets to short signatures,
while preserving similarity

3. Locality-sensitive hashing: focus on pairs of
signatures likely to be similar




Refresher: Dimensionality Reduction (PCA and SVYD) 5
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Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



Overview of Topics Covered in Chapter 7
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An Overview of Today’s Topic > Clustering 7

= Given a set of points,
group the points into
some # clusters, so that:

* Members of a cluster are
close/similar to each other

* Members of different
clusters are dissimilar

= Usually:
* Points are in a high- . X x
dimensional space XX X X
° Similarity is defined using a RO

distance measure
= Euclidean, Jaccard, ...
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O
O

DOG

O
GD

Q

O

Figure 1.1: Plotting cholera cases on a map of London

Source: A. Rajaraman, J. Leskovec, ].D. Ullman. (2012). “Mining of Massive Datasets”. http:/ /i.stanford.edu/~ullman/mmds.html




Clustering has Many Applications in IE 9
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Source: http:/ /www.isixsigma.com/tools-templates /sampling-data/process-data-mining-partitioning-variance/




Overview of Clustering Methods 10

= Hierarchical Clustering: ““
e Agglomerative (bottom up): ;
= Initially, each point is a cluster N ‘ ‘
= Repeatedly combine the two oaf
“nearest” clusters into one i ’ﬂ—# ﬁ_ ﬁ‘l
* Divisive (top down): s b b e ek

= Start with one cluster and recursively split it

= Point assignment:
* Maintain a set of clusters
° Points belong to “nearest” cluster

Slide Adapted from: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




Hierarchical Clustering

= Key Operation:
* Repeatedly combine two
nearest clusters

= Important questions:
1. How will clusters be
represented?

2. How will we choose which
two clusters to merge?

5. When will we stop
combining clusters?
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Slide Adapted from: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




Hierarchical Clustering — Some Details 12

= Operation: Repeatedly combine two nearest clusters

1. How will clusters be represented?

* Key problem: As you build clusters, how do you represent the
location of each cluster, to tell which pair of clusters is closest?

= Euclidean case: each cluster has a centroid = average of its
(data)points

= Non-Euclidean case: Very similar (but use non-Euclidean distances)

2. How will we choose which two clusters to merge?
* Measure cluster distances by distances of centroids

3. When will we stop combining clusters?

* When combining = inadequate cluster (e.g. avg distance
between points in clusters increases) = Stop by producing a
tree of clusters



Hierarchical Clustering — An Example 13
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Hierarchical Clustering — Non-Euclidean Distances 14

= What about the Non-Euclidean case?

° The only “locations” we can talk about are the points
themselves

= j.e., thereis no “average” of two points

= One Approach:
1. How will clusters be represented?
clustroid = (data)point “closest” to other points

2. How will we choose which two clusters to merge?

Treat clustroid as if it were centroid, when computing
intercluster distances



Hierarchical Clustering — Non-Euclidean Distances

1. How will clusters be represented?
clustroid = point “closest” to other points

= Possible meanings of “closest”:
° Smallest maximum distance to other points
° Smallest average distance to other points
° Smallest sum of squares of distances to other points
= For distance metric d clustroid ¢ of cluster C is: M2} d(x.c)

15

Datapoint Centroid

Centroid is the avg. of all (data)points
in the cluster. This means centroid is
Clustroid an “artificial” point.
Cluster on Clustroid is an existing (data)point
3 datapoints that is “closest” to all other points in
the cluster.

Slide Adapted from: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




Implementation of Hierarchical Clustering Approaches 16

= Naive implementation of hierarchical clustering:

* At each step, compute pairwise distances between all pairs of
clusters, then merge

* O(N3)

= VERY COMPUTATIONALLY EXPENSIVE




Overview of Topics Covered in Chapter 7
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K-Means Clustering 18

= Most widely used clustering algorithm. It follows a
very simple procedure whose main characteristics are:
* Assumes Euclidean space/distance
* Start by picking k, the number of clusters
* Initialize clusters by picking one point per cluster

= Example: Pick one point at random, then k-1 other points,
each as far away as possible from the previous points

Algorithm Basic K-means Algorithm.

: Select K points as the initial centroids.

: repeat

1
2
3: Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change




K-Means Clustering: An Example 19

Problem Definition: Assume that we have these 11 points,
and we have initialized the k-means method by picking the
highlighted points our two centroids (k=2, given)

X ... data point
[]--- centroid




~ Getting the K Right 0

= Try different k, looking at the change in the average
distance to centroid, as k increases.

= Average falls rapidly until right k, then changes little

Best value
of k
Average l
distance to
centroid K N

Slide Adapted from: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



Getting the K Right: An Example 21

Too few;
many long
distances
to centroid.

Slide Adapted from: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




Getting the K Right: An Example 22

Just right;
distances
rather short.

Slide Adapted from: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




Getting the K Right: An Example 23

Too many;

little improvement
in average
distance.

Slide Adapted from: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu
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