Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 18: Recommendation Systems

SAMUEL GINN COLLEGE OF ENGINEERING

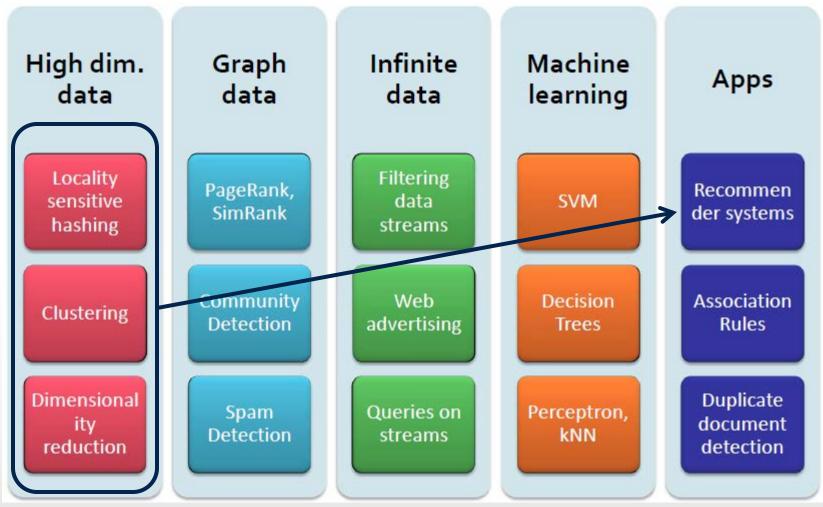
Department of Industrial and Systems Engineering

Spring 13

Spring Break Refresher: Course Objectives

- Explain the basics behind the hardware and software needed for "big data" analytics.
- Analyze high-dimensional data.
- Develop visualizations that makes the data "sing"⁽ⁱ⁾
- Describe the components of successful search engines.
- Mine the web using structured and unstructured data.
- Train algorithms that can be used to extract new knowledge from data.

Spring Break Refresher: Analytics Based on Data Type



Overview of Topics Covered in Chapter 9

A Model for Recommendatio n Systems

- The Utility Matrix
- Physical vs. Online Worlds
- Applications
- Populating the Utility Matrix

Content-based Recommendatio ns

- Item Profiles
- Discovering Features of Docs
- User Profiles
- Recommending Items Based on Content

Collaborative Filtering

Discussing its Main Idea (Only)

Recommendation Systems

The Utility Matrix

- In RS, there are two classes of entities:
 - Users
 - Items
- The data itself is represented as a **utility matrix**
- The **utility matrix** is typically very sparse

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

A Side Note: The Characteristic Matrix

- Properties of the Matrix:
 - Rows = elements of the universal set
 - Columns = sets
- 1 if and only if the token is a member of the set
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)

Element	S_1	S_2	S_3	S_4
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Typical matrix is sparse

Physical vs. Online Worlds

Physical World

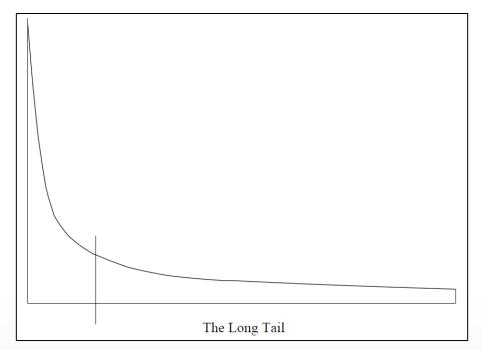
- Limited by shelf space
- Choice of products is based on aggregate #s
- Recommendation systems are fairly simple; recommend hits

Online World

- Essentially unlimited
- Choice of products is ~ infinite
- Recommendation systems can be tailored to a single customer

The Properties of the Online World → New Paradigm in Marketing and New Opportunities (How?)

The Long Tail: A Discussion of the Wired Article



The long tail: physical institutions can only provide what is popular, while on-line institutions can make everything available

More choice necessitates better filters

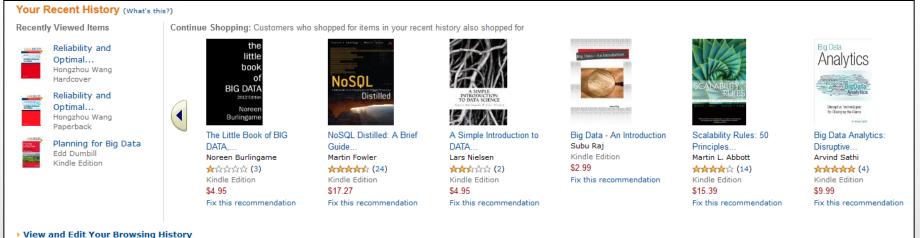
- Recommendation engines
- How Into Thin Air made Touching the Void a bestseller: <u>http://www.wired.com/wired/archive/12.10/tail.html</u>

The Long Tail: A Teaser

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!

Applications of Recommendation Systems

- Traditional Applications
 - Product Recommendations
 - Movie Recommendations
 - News Article Recommendations
- IE Applications
 - ????
 - ????



> View and Edit Your Browsing History

Key Issues in Recommendation Systems

- **1.** Gathering "known" ratings for matrix
- 2. Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- 3. Evaluating extrapolation methods

I) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

2) Extrapolating the Empty Cells in the Utility Matrix

14

Key problem: matrix U is sparse

- Most people have not rated most items
- Cold start:
 - New items have no ratings
 - New users have no history

Three approaches to recommender systems:

Our Focus in Class

- Content-basedCollaborative
- Hybrid

Overview of Topics Covered in Chapter 9

A Model for Recommendatio n Systems The Utility Matrix

• Physical vs. Online Worlds

Applications

Populating the Utility Matrix

Content-based Recommendatio ns

Item Profiles

- Discovering Features of Docs
- User Profiles
- Recommending Items Based on Content

Collaborative Filtering

Discussing its Main Idea (Only)

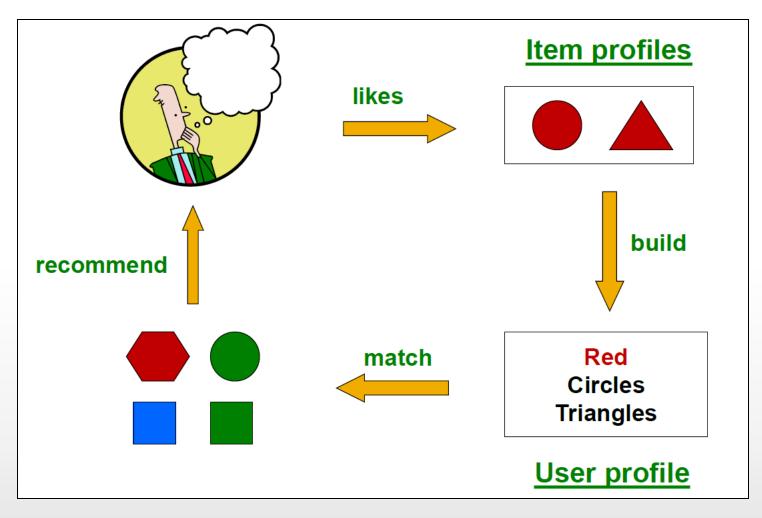
Content-Based Recommendations

Main idea: Recommend items to customer *x* similar to previous items rated highly by customer *x*

Example:

- **Movie recommendations:** Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news: Recommend other sites with "similar" content
- Images: How do you compare images?

Plan of Action



Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

Key: Generating Item (or User) Profile

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - <u>Text:</u> set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... feature
 - Document ... item

• Question: Now what?

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new and unpopular items
 - No first-rater problem
- Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard E.g., images, movies, music
- -: Overspecialization Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- -: Recommendations for new users How to build a user profile?

Overview of Topics Covered in Chapter 9

A Model for Recommendatio n Systems The Utility Matrix

• Physical vs. Online Worlds

Applications

Populating the Utility Matrix

Content-based Recommendatio ns

Item Profiles Discovering Features <u>of Docs</u>

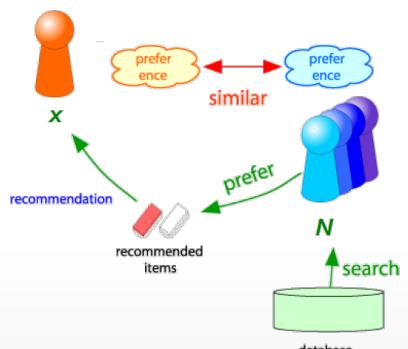
- User Profiles
- Recommending Items Based on Content

Collaborative Filtering

Discussing its Main Idea (Only)

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N



Pros/Cons: Collaborative Filtering

- Works for any kind of item
 - No feature selection needed

Cold Start:

- Need enough users in the system to find a match
- Sparsity:
 - Hard to find users that have rated the same items

• First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Practical Questions to think about: Evaluation

Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 18: Recommendation Systems

SAMUEL GINN COLLEGE OF ENGINEERING

Department of Industrial and Systems Engineering

Spring 13