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Refresher: Analytics Based on Data Type
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Refresher: The Brilliant ldea that Made Google - PageRank:3

» [dea: Links as votes
° Page is more important if it
has more links

= In-coming links? Out-going
links?

» Think of in-links as votes:
* www.auburn.edu

° www.joe-schmoe.com

= Are all in-links are equal?

° Links from important pages
count more

* Recursive question!


http://www.auburn.edu/
http://www.joe-schmoe.com/

Refresher: What do we mean by recursive? 4

= Each link’s vote is proportional to the importance of
its source page

= [f page p with importance x has n out-links, each link
gets x/n votes

= Page p’s own importance is the sum of the votes on its
in-links



The Interpretation of Our Formulation 5

* Imagine a random web surfer:
° At any time t, surfer is on some page i

° Attime t + 1, the surfer follows an out-link
from i uniformly at random

* Ends up on some page j linked from i
° Process repeats indefinitely

s Let:

° p(t) ... vector whose ith coordinate is the — E
prob. that the surfer is at page i at time t i ] out(l)

* So, p(t) is a probability distribution over pages

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




The Stationary Distribution

= Where is the surfer at time #+1?
* Follows a link uniformly at random
p(t+1)=M*p(t)
* Suppose the random walk reaches a state
p(t+1)=M*p(t)=p(t)
then p(t) is stationary distribution of a random
walk

= Our original rank vector r satisfies that
sincer=M"*r
* So, r is a stationary distribution for the
random walk

=2

1—>] Dllt(l)

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




I Three Questions that Will be Addressed in Today’s Class 7
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1. Does this converge?
2. Does it converge to what we want?

3. Are results reasonable?



Does this converge? 8

Does this converge to what we want?

Exercise: Based on our discussion from last class, please answer these two questions




Problems with the Flow Model 9

/“/ o T ™) There exists two problems
/ // | ﬂl with the flow model:
\4 R 1. Some pages are “dead

Strongly
Connected
Component

In

V44
Our | _— ends
Component - ?

°  Such pages cause
importance to “leak out”

2. Spider Traps
. * Eventually, they absorb all

R isconnected 9
Q [()“omponeltlts lmp Ortanc c
O

Figure 5.2: The “bowtie” picture of the Web




The “Spider Trap’ Problem 10

Example from Last Class Modified Example

0O

Let us work it out together to see the difference in Convergence ©



Solution: Random Teleport 11

= The Google solution for spider traps: At each time
step, the random surfer has two options:
* With probability B, follow a link at random
* With probability 1-p, jump to some page uniformly at random
* Common values for P are in the range 0.8 to 0.9

» Surfer will teleport out within a few time steps

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



The “Dead-End’” Problem 12

Standard Example Spider-Web Example Dead-End

< .@

What is the impact of dead-end on the convergence of the r vector?



Solution: Teleport 13

= Teleports: Follow random teleport links with
probability 1.0 from dead-ends

° Adjust matrix accordingly
4
\
y a m

y a m

v %2 | %2 | 0O v %2 | 2| %
| 0 | 0 oo | 0 | Y

m| O | % | O m| O [ % | %

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




I Why Teleports Solve the Problem? 4

WD) ()

Markov Chains

= Set of states X

* Transition matrix P where P;; = P(X=1 | X15))

= 1t specifying the probability of being at each state x € X
= Goal is to find n such thatn =P =«

Theory of Markov Chains

= For any start vector, the power method applied to a
transition matrix P will converge to a unique positive

stationary vector as long as P is stochastic, irreducible
and aperiodic.



Making M Stochastic

= Stochastic: Every column sums to 1

= A possible solution: Add green links

15

* a,...=1if node / has
out deg 0, =0 else

S =M + aT(%l) B ek

y a m
y| % | % | 13
\ al | 0 |13
m| 0 | % | 1/3
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=ry/2+r, /2+r1,/3
=ry/2+1,/3
=r,/2 +r, /3

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




" Make M Aperiodic

= A chain is periodic if there exists k > 1 such
that the interval between two visits to some
state s is always a multiple of k.

= A possible solution: Add green links

16




Make M Irreducible 17

* Definition: From any state, there is a non-
zero probability of going from any one
state to any another

= A possible solution: Add green links




Solution: Random Jumps 18

= Google’s solution that does it all:
* Makes M stochastic, aperiodic, irreducible

= At each step, random surfer has two options:
* With probability I1-p, follow a link at random
* With probability 3, jump to some random page

= PageRank equation [Brin-Page, 98]

T 1
=) d=FF+F-

l—]
Assuming we follow random teleport links d. ... out-degree
with probability 1.0 from dead-ends of node i

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



I In-depth Discussion (FYI): The Google Matrix 19
PageRank equation [Brin-Page, 98]

A
=) A=Rg+h,
=]

The Google Matrix A:

Az(l—ﬁ)S+ﬁ%1-1T

G is stochastic, aperiodic and irreducible, so
T'(t'l'l) = A- 'r'(t)

Whatis £ ?
“ |n practice S =0.15 (make 5 steps and jump)

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu




In-depth Discussion (FYI): An Example 20

S 1/n-1-17
0.8'14+0.2%
1/21/2 0 1/3 1/3 1/3
0.8/1/2 0 0| *90.211/31/31/3
0 172 1 1/31/3 1/3

y | 7/15 7/15 1/15
a |7/15 1/15 1/15
m|1/15 7/15 13/15

0.8+0.2-%

< < A
y 1/3 033 024 026 7/33
a = /3 020 020 0.18 ... 5/33
m /3 046 052 0.56 21/33

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu
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