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2 Refresher: Analytics Based on Data Type 



3 Refresher: The Brilliant Idea that Made Google – PageRank  

 Idea: Links as votes  
• Page is more important if it 

has more links  
 In-coming links? Out-going 

links?  
 

 Think of in-links as votes:  
• www.auburn.edu   
• www.joe-schmoe.com  
 
 Are all in-links are equal?  

• Links from important pages 
count more  

• Recursive question!  
 
 

http://www.auburn.edu/
http://www.joe-schmoe.com/


4 Refresher: What do we mean by recursive? 

 Each link’s vote is proportional to the importance of 
its source page 

 
 If page p with importance x has n out-links, each link 

gets x/n votes 
 
 Page p’s own importance is the sum of the votes on its 

in-links 



5 The Interpretation of Our Formulation 

 Imagine a random web surfer: 
• At any time 𝑡, surfer is on some page 𝑖 
• At time 𝑡 + 1, the surfer follows an out-link 

from 𝑖 uniformly at random 
• Ends up on some page 𝑗 linked from 𝑖 
• Process repeats indefinitely 
 
 Let: 

•  𝒑(𝒕) … vector whose 𝑖th coordinate is the 
prob. that the surfer is at page 𝑖 at time 𝑡 

• So, 𝒑(𝒕) is a probability distribution over pages 

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu 



6 The Stationary Distribution 

 Where is the surfer at time t+1?  
• Follows a link uniformly at random  

𝑝 (𝑡 + 1) = 𝑀 * 𝑝(𝑡)  
• Suppose the random walk reaches a state  

𝑝 (𝑡 + 1) = 𝑀 * 𝑝(𝑡) = 𝑝(𝑡)  
    then 𝒑(𝑡) is stationary distribution of a random 
    walk  
 
 Our original rank vector 𝒓 satisfies that 

since 𝒓 = 𝑴 * 𝒓  
• So, 𝒓 is a stationary distribution for the 

random walk  

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu 



7 Three Questions that Will be Addressed in Today’s Class 

 
 
 
 
 

1. Does this converge?  

2. Does it converge to what we want?  

3. Are results reasonable?  



8 Does this converge? 

Does this converge to what we want? 

Exercise: Based on our discussion from last class, please answer these two questions 



9 Problems with the Flow Model 

There exists two problems 
with the flow model: 

1. Some pages are “dead 
ends” 

• Such pages cause 
importance to “leak out” 

2. Spider Traps 
• Eventually, they absorb all 

importance 



10 The “Spider Trap” Problem 

Example from Last Class Modified Example 

Let us work it out together to see the difference in Convergence  



11 Solution: Random Teleport 

 The Google solution for spider traps: At each time 
step, the random surfer has two options:  
• With probability β, follow a link at random  
• With probability 1-β, jump to some page uniformly at random  
• Common values for β are in the range 0.8 to 0.9  
 

 Surfer will teleport out within a few time steps  
 

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu 



12 The “Dead-End” Problem 

Standard Example Spider-Web Example 

What is the impact of dead-end on the convergence of the r vector? 

Dead-End 



13 Solution: Teleport 

 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends  
• Adjust matrix accordingly  
 

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu 



14 Why Teleports Solve the Problem? 

 
 
 

Markov Chains  
 Set of states X  
 Transition matrix P where Pij = P(Xt=i | Xt-1=j)  
 π specifying the probability of being at each state x ∈ X  
 Goal is to find π such that π = P π  
 
Theory of Markov Chains  
 For any start vector, the power method applied to a 

transition matrix P will converge to a unique positive 
stationary vector as long as P is stochastic, irreducible 
and aperiodic.  

 



15 Making M Stochastic 

 Stochastic: Every column sums to 1 
 
 A possible solution: Add green links  

 

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu 



16 Make M Aperiodic 

 A chain is periodic if there exists k > 1 such 
that the interval between two visits to some 
state s is always a multiple of k.  
 

 A possible solution: Add green links  
 



17 Make M Irreducible 

 Definition: From any state, there is a non-
zero probability of going from any one 
state to any another  
 
 A possible solution: Add green links  

 



18 Solution: Random Jumps 

 Google’s solution that does it all:  
• Makes M stochastic, aperiodic, irreducible  
 

 At each step, random surfer has two options:  
• With probability 1-β, follow a link at random  
• With probability β, jump to some random page  
 

 PageRank equation [Brin-Page, 98]  

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu 



19 In-depth Discussion (FYI): The Google Matrix 

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu 



20 In-depth Discussion (FYI): An Example 

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu 
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