Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 21: Mining Social Network Graphs

SAMUEL GINN COLLEGE OF ENGINEERING

Department of Industrial and Systems Engineering

Spring 13

Preface: Network and Communities

We can think of networks as something looking like this:

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

Preface: Network and Communities

Goal: Finding Densely Linked Clusters

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

Outline for Topics Covered in Chapter 10

Social Networks as Graphs

• What is a Social Network?

- Social Network as Graphs
- Varieties of Social Networks
- Graphs with Several Node Types

Clustering of Social Network Graphs

Distance Measures

- Applying Standard Clustering Techniques
- Betweenness
- ^b Using Betweenness to Find Communities

Direct Discovery of Communities

Finding Cliques Complete Bipartite Graphs Finding Complete Bipartite Subgraphs

Partitioning of Graphs What makes a good partition? Normalized Cuts Some Matrices that Describe Graphs

Eigenvalues of the Laplacian Matrix

Social Networks as Graphs

- Essential Characteristics of a social network are:
 - Building Block → Entities (Entities are typically people)
 - At least one relationship between entities of a network
 - Assumption: <u>nonrandomness</u>
- Naturally modeled as undirected graphs:
 - Entities \rightarrow Nodes
 - Nodes connected if there is a relationship between entities
 - Degree \rightarrow labeling the edges

Source: Click here

Are Facebook/Twitter the only Networks that are Social? 6

- Other than "friends" networks, there are many examples that exhibit locality of relationships:
 - Telephone Networks
 - Email Networks
 - Collaboration Networks
 - Airport Networks

Graphs with Several Node Types

- Entities can be of different types (e.g. Facebook has people, pages, and network)
- A natural way to represent that is through a k-partite graph
 - Consists of k sets of nodes (no edges between nodes of same set)
- Figure: Deli.cio.us network

How do you define a distance measure for a social network?9

- If we are to apply standard clustering techniques, our first step would be to define a distance measure.
- Question: What would be a suitable distance measure for the graph below?
 - Hint: The closer the nodes, the better 😊

Problems in Hierarchical Clustering

• Consider the graph in the Figure below.

Questions:

- 1. Based on the geometry of the graph, identify some of the large clusters that we can obtain.
- 2. By using hierarchical clustering (bottom-up approach), what is the probability that we cluster B and D together first?

Problems with Point Assignment (k-Means Clustering)

11

- If we start by picking two points at random, they might be in the same cluster.
- If we start by picking one point at random, and select a point furthest away from it, we can still mess it up – Example??
- Even if we get two reasonable starting points, e.g. B and F, how will we assign D?

With a larger # nodes, the problem gets more complicated as you can imagine ©

Betweenness

 Definition: Betweenness of edge (a,b) is defined as the number of pairs of nodes (x, y) such that edge (a,b) lies on the shortest path between them. 12

Properties:

- High Betweenness is bad!!
 - Interpretation: High scores suggest that (a,b) runs between two different communities
- Example/Exercise: Calculate the betweenness

Betweenness – An Observation

The betweenness score for edges of a graph behave something like (i.e. not exactly) a distance measure on the nodes of a graph. Therefore, we can cluster by taking out the edges in an increasing order of betweenness!!

Example:

What is the interpretation of the first and last sets of clusters?

Side Note: Complete Bipartite Graphs

- Definition: It consists of s nodes on one side and t nodes on the other, with all possible edges between the nodes of one side and the other present.
- It is possible that a bipartite graph with many edges has a large complete bipartite subgraph ^(C)

15

Searching for Small Communities

- We want to enumerate complete bipartite subgraphs (k_{s,t})
 - *k*_{s,t}: *s* nodes on the left and *t* nodes on the right
 - Note that the book defines $k_{s,t}$ differently
- In example, s=3 and t=2;
 - Note it is more efficient to have s<=t (i.e. rotate graph if we were to make any real calculations)

A 3 Step Plan

Two points:

(1) Dense bipartite graph: the signature of a community(2) Complete bipartite subgraph *Ks,t*

• *K*_{*s*,*t*} = graph on *s* nodes, each links to the same *t* other nodes

Plan:

How do we solve (2) in a giant graph?

Similar problems were solved on big non-graph data?

Details Regarding Frequent Itemset Enumeration

Setting:

- Market: Universe *U* of *n* items
- **Baskets:** *m* subsets of *U*: S_1 , S_2 , ..., $S_m \subseteq U(S_i \text{ is a set of items one person bought})$
- **Support:** Frequency threshold *f*

Goal:

- Find all items in *T* that were bought together at least *f* times (*T* s.t. *T* ⊆ *Si* of ≥ f sets *Si*)
- What's the connection between the itemsets and complete bipartite graphs?

From Itemsets to Bipartite k_{s,t}

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

From Itemsets to Bipartite $k_{s,t}$

Itemsets finds Complete bipartite graphs!

How?

- View each node *i* as a set S_i of nodes *i* points to
- K_{s,t} = a set Y of size t that occurs in s sets S_i
- Looking for K_{s,t} → set of frequency threshold to s and look at layer t - all frequent sets of size t

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see <u>http://cs246.stanford.edu</u>

From Itemsets to Bipartite k_{s,t} – Summary

Analytical result:

- Complete bipartite subgraphs K_{s,t} are embedded in larger dense enough graphs (*i.e.*, the communities)
 - Biparite subgraphs act as "signatures" of communities

Algorithmic result:

- Frequent itemset extraction and dynamic programming finds graphs K_{s,t}
 - Method is super scalable

What makes a good partition?

- A good partition has the following properties:
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections

What makes a good partition?

- A good partition has the following properties:
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections

Typically, we want the clusters to be similar in size

Normalized Cuts

- A proper definition of a "good" cut must produce balanced sets.
- Suppose we want to divide the figure into two distinct sets of nodes: S and T, then the normalized cut is:

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

Example: Identify the *ncut*:

- Smallest cut
- Optimal cut

Some Matrices that Describe the Graphs

Adjacency Matrix (A)

- n×n matrix
- $A=[a_{ij}], a_{ij}=1$ if edge exists between node *i* and *j* 0 otherwise

26

Symmetric Matrix

Some Matrices that Describe the Graphs

Degree Matrix (D)

- *n*×*n* matrix
- $D=[d_{ii}]$, d_{ii} = degree of node

27

Some Matrices that Describe the Graphs

Laplacian Matrix (L)

n×n matrix

Eigenvalues of the Laplacian Matrix

Partition based on the smallest eigenvector

Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 21: Mining Social Network Graphs

SAMUEL GINN COLLEGE OF ENGINEERING

Department of Industrial and Systems Engineering

Spring 13