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2 Preface: Network and Communities 

We can think of networks as something looking like this: 

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


3 Preface: Network and Communities 

Goal: Finding Densely Linked Clusters  

Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


4 Outline for Topics Covered in Chapter 10 

• What is a Social Network? 
• Social Network as Graphs 
• Varieties of Social Networks 
• Graphs with Several Node Types 

Social Networks 
as Graphs 

• Distance Measures 
• Applying Standard Clustering Techniques 
• Betweenness 
• Using Betweenness to Find Communities 

Clustering of 
Social Network 

Graphs 
• Finding Cliques 
• Complete Bipartite Graphs 
• Finding Complete Bipartite Subgraphs 

Direct Discovery 
of Communities 

• What makes a good partition? 
• Normalized Cuts 
• Some Matrices that Describe Graphs 
• Eigenvalues of the Laplacian Matrix 

Partitioning of 
Graphs 



5 Social Networks as Graphs 

 Essential Characteristics of 
a social network are: 
• Building Block  Entities 

(Entities are typically people) 
• At least one relationship 

between entities of a network 
• Assumption: nonrandomness 
 
 Naturally modeled as 

undirected graphs: 
• Entities  Nodes 
• Nodes connected if there is a 

relationship between entities 
• Degree  labeling the edges 

Source: Click here 

http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=X2Tq6VrOOW7XLM&tbnid=m1g9ZF2uDrT0JM:&ved=0CAUQjRw&url=https://www.kisti.re.kr/min_down?tname=MINBOARD001&file_bbsid=B303&file_seq=1045&file_fseq=1&ei=0rpTUcX2LZKM9ASewoDABA&psig=AFQjCNEspxmjYQr-eEfX3bh2ZJuflPW-qQ&ust=1364528189391541


6 Are Facebook/Twitter the only Networks that are Social? 

 Other than “friends” 
networks, there are 
many examples that 
exhibit locality of 
relationships: 
• Telephone Networks 
• Email Networks 
• Collaboration Networks 
• Airport Networks 

 



7 Graphs with Several Node Types 

 Entities can be of different 
types (e.g. Facebook has 
people, pages, and network) 
 
 A natural way to represent 

that is through a k-partite 
graph 
• Consists of k sets of nodes (no 

edges between nodes of same 
set) 

 
 Figure: Deli.cio.us network 
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• What is a Social Network? 
• Social Network as Graphs 
• Varieties of Social Networks 
• Graphs with Several Node Types 

Social Networks 
as Graphs 

• Distance Measures 
• Applying Standard Clustering Techniques 
• Betweenness 
• Using Betweenness to Find Communities 

Clustering of 
Social Network 

Graphs 
• Finding Cliques 
• Complete Bipartite Graphs 
• Finding Complete Bipartite Subgraphs 

Direct Discovery 
of Communities 

• What makes a good partition? 
• Normalized Cuts 
• Some Matrices that Describe Graphs 
• Eigenvalues of the Laplacian Matrix 

Partitioning of 
Graphs 



9 How do you define a distance measure for a social network? 

 If we are to apply standard clustering techniques, our 
first step would be to define a distance measure. 
 
 Question: What would be a suitable distance 

measure for the graph below? 
• Hint: The closer the nodes, the better  

A B D 

G F 

E 

C 



10 Problems in Hierarchical Clustering 

 Consider the graph in the Figure below. 
 
 
 
 

Questions:  
1. Based on the geometry of the graph, identify some 

of the large clusters that we can obtain. 
 
 

2. By using hierarchical clustering (bottom-up 
approach), what is the probability that we cluster B 
and D together first? 

       
 

A B D 

G F 

E 

C 



11 Problems with Point Assignment (k-Means Clustering) 

 If we start by picking two points at random, they 
might be in the same cluster. 
 
 If we start by picking one point at random, and select 

a point furthest away from it, we can still mess it up – 
Example?? 
 
 Even if we get two reasonable starting points, e.g. B 

and F, how will we assign D? 

With a larger # nodes, the problem gets more complicated as you can imagine  



12 Betweenness 

 Definition: Betweenness of edge (a,b) is defined as 
the number of pairs of nodes (x, y) such that edge (a,b) 
lies on the shortest path between them. 
 
 Properties: 

• High Betweenness is bad!! 
 Interpretation: High scores suggest that (a,b) runs between 

two different communities 
 
 Example/Exercise: Calculate the betweenness 

A B D 

G F 

E 

C 



13 Betweenness – An Observation 

The betweenness score for edges of a graph behave 
something like (i.e. not exactly) a distance measure on 

the nodes of a graph. Therefore, we can cluster by taking 
out the edges in an increasing order of betweenness!! 

 
Example: 

A B D 

G F 

E 

C 

What is the interpretation of the first and last sets of clusters? 
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• What is a Social Network? 
• Social Network as Graphs 
• Varieties of Social Networks 
• Graphs with Several Node Types 

Social Networks 
as Graphs 

• Distance Measures 
• Applying Standard Clustering Techniques 
• Betweenness 
• Using Betweenness to Find Communities 

Clustering of 
Social Network 

Graphs 
• Finding Cliques 
• Complete Bipartite Graphs 
• Finding Complete Bipartite Subgraphs 

Direct Discovery 
of Communities 

• What makes a good partition? 
• Normalized Cuts 
• Some Matrices that Describe Graphs 
• Eigenvalues of the Laplacian Matrix 

Partitioning of 
Graphs 



15 Side Note: Complete Bipartite Graphs 

 Definition: It consists of s 
nodes on one side and t 
nodes on the other, with 
all possible edges between 
the nodes of one side and 
the other present. 
 
 It is possible that a 

bipartite graph with 
many edges has a large 
complete bipartite 
subgraph  

Bo 
Jackson 

MLB 

Drew 
Hanson 

NFL 

Deion 
Sanders 

 



16 Searching for Small Communities 

 We want to enumerate 
complete bipartite 
subgraphs (ks,t) 
• ks,t : s nodes on the left and t 

nodes on the right 
• Note that the book defines 

ks,t  differently 
 
 In example, s=3 and t=2;  

• Note it is more efficient to 
have s<=t (i.e. rotate graph 
if we were to make any real 
calculations) 

Bo 
Jackson 

MLB 

Drew 
Hanson 

NFL 

Deion 
Sanders 

 



17 A 3 Step Plan 

Two points:  
(1) Dense bipartite graph: the signature of a community 
(2) Complete bipartite subgraph Ks,t  

• Ks,t = graph on s nodes, each links to the same t other nodes  
 

Plan:  
How do we solve (2) in a giant graph? 
Similar problems were solved on big non-graph data?  

 
 



18 Details Regarding Frequent Itemset Enumeration 

Setting:  
 Market: Universe U of n items  
 Baskets: m subsets of U: S1, S2, …, Sm ⊆ U (Si is a set of 

items one person bought)  
 Support: Frequency threshold f  

 
Goal:  
 Find all items in T that were bought together at least 

f times (T s.t. T ⊆ Si of ≥ f sets Si )  
 What’s the connection between the itemsets and 

complete bipartite graphs?  
 



19 From Itemsets to Bipartite ks,t 

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


20 From Itemsets to Bipartite ks,t 

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu  

http://cs246.stanford.edu/


21 From Itemsets to Bipartite ks,t
 – Summary  

Analytical result:  
 Complete bipartite subgraphs Ks,t are embedded in 

larger dense enough graphs (i.e., the communities) 
•  Biparite subgraphs act as “signatures” of communities  

 

Algorithmic result:  
 Frequent itemset extraction and dynamic programming 

finds graphs Ks,t  
• Method is super scalable  
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• What is a Social Network? 
• Social Network as Graphs 
• Varieties of Social Networks 
• Graphs with Several Node Types 

Social Networks 
as Graphs 

• Distance Measures 
• Applying Standard Clustering Techniques 
• Betweenness 
• Using Betweenness to Find Communities 

Clustering of 
Social Network 

Graphs 
• Finding Cliques 
• Complete Bipartite Graphs 
• Finding Complete Bipartite Subgraphs 

Direct Discovery 
of Communities 

• What makes a good partition? 
• Normalized Cuts 
• Some Matrices that Describe Graphs 
• Eigenvalues of the Laplacian Matrix 

Partitioning of 
Graphs 



23 What makes a good partition? 

 A good partition has the following properties: 
• Maximize the number of within-group connections  
• Minimize the number of between-group connections  
 
 A B D 

G F 

E 

C 

Best (and 
shortest) cut 



24 What makes a good partition? 

 A good partition has the following properties: 
• Maximize the number of within-group connections  
• Minimize the number of between-group connections  
 
 A B D 

G F 

E 

C 
H 

Best 
cut 

Shortest 
cut 

Typically, we want the clusters to be similar in size 



25 Normalized Cuts 

 A proper definition of a “good” cut must produce 
balanced sets. 
 

 Suppose we want to divide the figure into two distinct 
sets of nodes: S and T, then the normalized cut is: 
 
 
 

Example: Identify the ncut: 
 Smallest cut 
 Optimal cut 

 

A B D 

G F 

E 

C 
H 



26 Some Matrices that Describe the Graphs 

Adjacency Matrix (A) 
 n×n matrix 
 A=[aij], aij= 1 if edge exists between node i and j 
            0 otherwise 
 
 
 
 
 
 

Important Property: 
 Symmetric Matrix 

A B D 

G F 

E 

C 

A B C D E F G 
A 0 1 1 0 0 0 0 
B 1 0 1 1 0 0 0 
C 1 1 0 0 0 0 0 
D 0 1 0 0 1 1 1 
E 0 0 0 1 0 1 0 
F 0 0 0 1 1 0 1 
G 0 0 0 1 0 1 0 



27 Some Matrices that Describe the Graphs 

Degree Matrix (D) 
 n×n matrix 
 D=[dii], dii= degree of node 
  
 
 
 
 
 
 

Important Property: 
 Diagonal 

A B D 

G F 

E 

C 

A B C D E F G 
A 2 0 0 0 0 0 0 
B 0 3 0 0 0 0 0 
C 0 0 2 0 0 0 0 
D 0 0 0 4 0 0 0 
E 0 0 0 0 2 0 0 
F 0 0 0 0 0 3 0 
G 0 0 0 0 0 0 2 



28 Some Matrices that Describe the Graphs 

Laplacian Matrix (L) 
 n×n matrix 
 L=D-A = [lij], lii= dii  
                 lij = -1 if edge exists  
              0 otherwise 
 
 
 
 
 
 

A B D 

G F 

E 

C 

A B C D E F G 
A 2 -1 -1 0 0 0 0 
B -1 3 -1 -1 0 0 0 
C -1 -1 2 0 0 0 0 
D 0 -1 0 4 -1 -1 -1 
E 0 0 0 -1 2 -1 0 
F 0 0 0 -1 -1 3 -1 
G 0 0 0 -1 0 -1 2 



29 Eigenvalues of the Laplacian Matrix 

 Partition based on the smallest eigenvector 
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