Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 22: Mining Social Network Graphs (Cont.)*

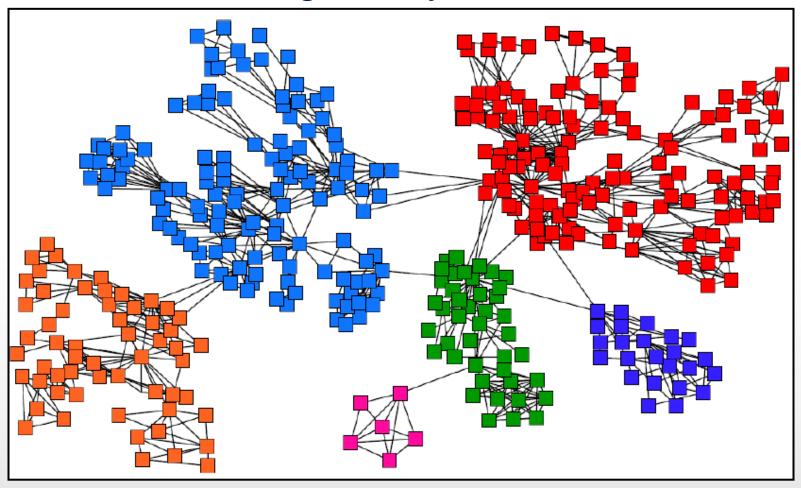
*Slides from Jeremy Ezell , PhD Candidate (College of Business) will be made available after seeking his permission

AUBURN UNIVERSITY

SAMUEL GINN COLLEGE OF ENGINEERING

Preface: Network and Communities

Goal: Finding Densely Linked Clusters



Source: Slide Adapted Jure Leskovic, Stanford CS246, Lecture Notes, see http://cs246.stanford.edu

Social Networks as Graphs

- What is a Social Network?
- Social Network as Graphs
- Varieties of Social Networks
- Graphs with Several Node Types

Clustering of Social Network Graphs

- Distance Measures
- Applying Standard Clustering Techniques
- Betweenness
- Using Betweenness to Find Communities

Direct Discovery of Communities

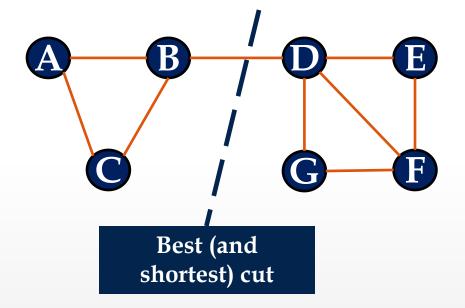
- Finding Cliques
- Complete Bipartite Graphs
- Finding Complete Bipartite Subgraphs

Partitioning of Graphs

- What makes a good partition?
- Normalized Cuts
- Some Matrices that Describe Graphs
- Eigenvalues of the Laplacian Matrix

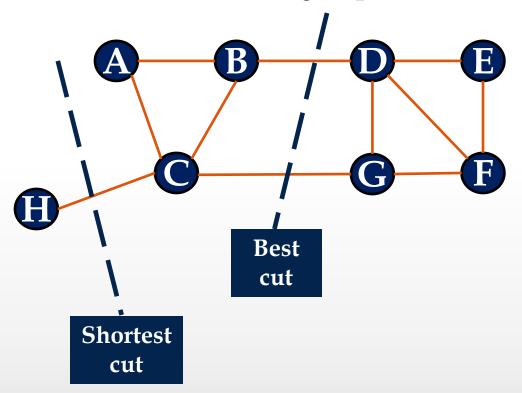
What makes a good partition?

- A good partition has the following properties:
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections



What makes a good partition?

- A good partition has the following properties:
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections



Typically, we want the clusters to be similar in size

Normalized Cuts

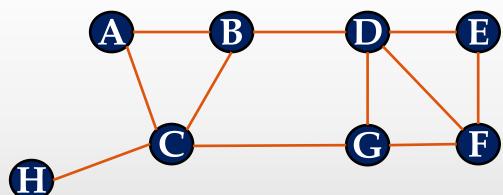
- A proper definition of a "good" cut must produce balanced sets.
- Suppose we want to divide the figure into two distinct sets of nodes: S and T, then the **normalized cut** is:

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

Example: Identify the *ncut*:

Smallest cut

Optimal cut



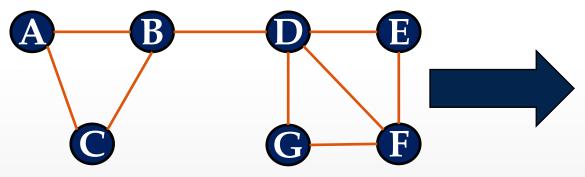
Some Matrices that Describe the Graphs

Adjacency Matrix (A)

■ *n*×*n* matrix

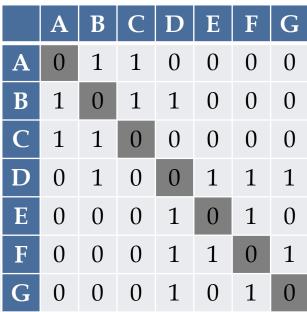
• $A=[a_{ij}]$, $a_{ij}=1$ if edge exists between node i and j

0 otherwise



Important Property:

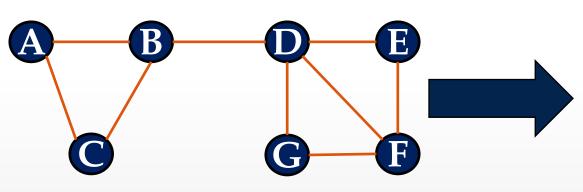
Symmetric Matrix



Some Matrices that Describe the Graphs

Degree Matrix (D)

- *n*×*n* matrix
- $D=[d_{ii}]$, d_{ii} = degree of node



	A	В	C	D	E	F	G
A	2	0	0	0	0	0	0
В	0	3	0	0	0	0	0
C	0	0	2	0	0	0	0
D	0	0	0	4	0	0	0
E	0	0	0	0	2	0	0
F	0	0	0	0	0	3	0
G	0	0	0	0	0	0	2

Important Property:

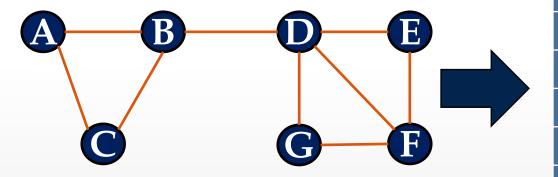
Diagonal

Some Matrices that Describe the Graphs

Laplacian Matrix (*L*)

- *n*×*n* matrix
- $L=D-A = [l_{ij}], l_{ii} = d_{ii}$

 l_{ij} = -1 if edge exists 0 otherwise



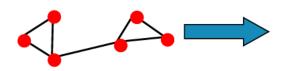
	A	В	C	D	E	F	G
A	2	- 1	- 1	0	0	0	0
В	- 1	3	-1	-1	0	0	0
C	-1	-1	2	0	0	0	0
						- 1	
Е	0	0	0	- 1	2	-1	0
F	0	0	0	- 1	- 1	3	-1
G	0	0	0	- 1	0	-1	2

Eigenvalues of the Laplacian Matrix

Partition based on the smallest eigenvector

Pre-processing:

 Build Laplacian matrix L of the graph



	1	2	3	4	5	6
1	3	-1	7	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

Decomposition:

• Find eigenvalues λ and eigenvectors x of the matrix L

• Map vertices to corresponding components of λ_2

	0.0
	1.0
. _	3.0
\-	3.0
	4.0
	5.0

1	0.3	
2	0.6	
3	0.3	
4	-0.3	
5	-0.3	
6	-0.6	

X =	0.4	0.3	-0.5	-0.2	-0.4	-0.5
	0.4	0.6	0.4	-0.4	0.4	0.0
	0.4	0.3	0.1	0.6	-0.4	0.5
	0.4	-0.3	0.1	0.6	0.4	-0.5
	0.4	-0.3	-0.5	-0.2	0.4	0.5
	0.4	0.6	0.4	-0.4	-0.4	0.0

How do we now find clusters?

Exam I - Analytics

Deidentified data of the exam, Piazza and the homework are made available at the link below:

https://www.dropbox.com/sh/rnlphui76jqks5z/Ij1FnLg vy8

Feel free to use MATLAB to manipulate and/or generate additional insights ©

Motivation for Machine Learning