Analytics and Visualization of Big Data

Fadel M. Megahed

Lecture 24: Machine Learning and Perceptron

SAMUEL GINN COLLEGE OF ENGINEERING

Department of Industrial and Systems Engineering

Spring 13

Motivation Behind Machine Learning

- Goal: Classify Data that will be seen in the future
- Components of ML Algorithms:
 - Training Set
 - Classifier
 - Test Set
- Unsupervised vs.
 Supervised Learning

Source: http://youtu.be/e0WKJLovaZg?t=27s

Outline for Today's Topics – Chapter 12

The Machine Learning Model

- Training Sets
- Some Illustrative Examples
- Approaches to Machine Learning
- Machine Learning Architecture

Perceptrons

- Training a Perceptron with Zero Threshold
- Multiclass Perceptrons
- Problems with Perceptrons
- Parallel Implementation

Chapter link: <u>http://i.stanford.edu/~ullman/pub/ch12.pdf</u>

The Machine Learning Model – The Training Set

- The data to which ML algorithm is applied is called a training set.
- A training set consists of a set of pairs (*x*, *y*), where
 - *x* is a vector of values, often called a feature vector.
 - *y* is the label, the classification value for x.
- The objective of the ML process is to discover a function y = f(x) that best predicts the value of y associated with unseen values of x.

Exercise

- Based on this figure, answer the following questions:
 - What *type* of *y* are we discussing here?
 - Develop an algorithm that would use the label and the *x* data to predict future dog labels based on their weight and height
 - For a [6 inch, 2.5 pounds] what is the likely dog type?
 - How is this different from clustering?

Approaches to Machine Learning

Decision Trees

- The form of f is a tree, and each node of the tree has a function of x that determines to which child or children the search must proceed.
- Decision trees are suitable for binary and multiclass classification.

Perceptrons:

- Threshold functions applied to the components of the vector x = [x₁, x₂, ..., x_n].
- A weight w_i is associated with the *i*th component, for each *i* = 1, 2, . . . , *n*, and there is a threshold *θ*.

• The output is +1 if:
$$\sum_{i=1}^{n} w_i x_i \ge \theta$$

and the output is −1 otherwise.

 A perceptron is suitable for binary classification, even when the number of features is very large.

Neural Networks

- Acyclic networks of perceptrons, with the outputs of some perceptrons used as inputs to others.
- These are suitable for binary or multiclass classification [©]

Dr. A. Smith is teaching a whole class on them next semester

Instance-based learning: (k-nearest-neighbor)

- Uses the entire training set to represent the function *f*.
- Appropriate for any kind of classification
 - We will concentrate on the case where *y* and the components of *x* are real numbers.

Source: http://www.statsoft.com/textbook/knearest-neighbors/

- SVM:
 - An advance over algorithms traditionally used to select weights and thresholds
 - It tends to be more accurate

Outline for Today's Topics – Chapter 12

The Machine Learning Model

Training Sets

- Some Illustrative Examples
- Approaches to Machine

Learning

Machine Learning Architecture

Perceptrons

- Training a Perceptron with Zero Threshold
- Multiclass Perceptrons
- Problems with Perceptrons
- Parallel Implementation

Chapter link: <u>http://i.stanford.edu/~ullman/pub/ch12.pdf</u>

Perceptrons

- A perceptron is a linear binary classifier.
- Each perceptron has a threshold θ. The output of the perceptron is: +1 if w.x > θ, and is -1 if w.x < θ.
 - The special case where w.x = θ will be regarded as "wrong".

Training the Perceptron

- Goal: Find a weight vector w and a threshold θ to separate the two labels
- Steps: (Assuming that θ=0)
 Initialize the vector w to all 0's.
 - Pick a learning-rate parameter *c*
 - A small, positive real number.
 - Consider each training example
 t = (x, y) in turn
 - Let y' = w.x
 - If y & y' have = sign, do nothing;
 - Else replace \mathbf{w} by \mathbf{w} + cy \mathbf{x} .
 - Adjust w in x's direction

Example – Spam Detection Using Perceptron

- Let us consider training a perceptron to recognize spam email. The training set consists of pairs (x, y) where x is a vector of 0's and 1's, with each component x_i corresponding to the presence or absence of a particular word in the email.
- The value of y is +1 if the email is known to be spam and -1 if it is known not to be spam.
- Using a simplified example of five words and six examples, train the perceptron.

Multiclass Perceptron

Issues with Perceptrons

- Overfitting
- Regularization
 If the data is not separable weights dance around

Mediocre generalization

 Finds a "barely" separating solution

HW 05 – Route I (10 Points)

 Research at least <u>three</u> articles that highlight the use of <u>data analytics in Web advertising</u>. Write a summary (minimum of one paragraph each) on the articles you have found.

Requirements:

- Researched articles must have a minimum of 400 words
- You must provide a link to the researched articles (Wikipedia should not be used)
- The total length of the submission should not exceed 500 words
- Submit to PDF with your name and ID to <u>fmegahed@auburn.edu</u>

HW 05 – Route II (20 Points)

 Read Section 12.2.7 in the book and develop a MapReduce code that can exploit parallel implementation of Perceptrons on AWS

Requirements:

- Python fundamentals available at: <u>http://www.codecademy.com/tracks/python</u>
- Validate your model with Xinyu
- All questions should be addressed to Xinyu
- Group work up to 4 team members is allowed

