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Final Topic: Infinite Data
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Mining Data Streams 3

= Most of the algorithms that we described assumed
that we are mining a database

= This week, we will make another assumption that
the data arrives in a stream or streams

* If not processed immediately, it will be lost forever
* Not feasible to store all the data and then process it

= Stream management is important when the input
rate is controlled externally.

= The data can be seen as infinite and non-stationary



The Stream Data Model

= Input elements enter at a
rapid rate, at one or
more input streams
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Examples of Stream Sources 5

= Sensor Data
° Many sensors feeding into a central controller

= Image Data
° Surveillance cameras producing a stream of images
* London has six million surveillance cameras!!

* Internet and Web Traffic

* Mining Query streams
* Mining click streams
° Mining social network news feeds



An Interesting Example of an Application 6

Source: www.ted.com/talks/deb_roy_the_birth_of a_word.html




Types of Queries One wants to Answer on a Data Stream 7

= Sampling data from a stream
* Construct a random sample

= Queries over sliding windows
* Number of items of type x in the last k elements of the stream

= Filtering a data stream
* Select elements with property x from the stream

» Counting distinct elements

e Number of distinct elements in the last k elements of the
stream

= Estimating moments
e Estimate avg./std. dev. of last k elements

» Finding frequent elements



Sampling from a Data Stream 8

= Since we can not store the entire stream, one obvious
approach is to store a sample

Two different problems:
1. Sample a fixed proportion of elements in the stream

2. Maintain a random sample of fixed size over a

potentially infinite stream
° At any “time” k we would like a random sample of s elements
= For all time steps k, each of k elements seen so far has equal

prob. of being sampled

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



Problem |: Sampling a Fixed Proportion 9

= Scenario: Search engine query stream
° Stream of tuples: (user, query, time)
* Have space to store 1/10th of query stream

= Solution:
* Generate a random integer in [0..9] for each query
° Store the query if the integer is 0, otherwise discard

= Evaluate the solution by answering the question what
fraction of queries by an average user are duplicates?

° Assume that each user issues x queries once and d queries twice
(total of x+2d queries)

* To evaluate you need to compare the expected value of the solution
vs. expected value of the true solution.



Problem ll: Maintaining a Fixed-Size Example 10
Suppose we need to maintain a random
sample S of size exactly s tuples

= E.g., main memory size constraint
Why? Don’t know length of stream in advance
Suppose at time n we have seen n items

= Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

Streamijlaxcyzlkgdeg...

At n= 5, each of the fist 5 tuples is included in the sample S with equal prob.
At n=7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu



11

Algorithm (aka Reservoir Sampling)
Store all the first s elements of the streamto S

Suppose we have seen n-1 elements, and now
the nth element arrives (n > s)

= With probability s/n, keep the nth element, else discard it

= |f we picked the nth element, then it replaces one of the
s elements in the sample S, picked uniformly at random

Claim: This algorithm maintains a sample S
with the desired property

Source: Jure Leskovic, Stanford CS246, Lecture Notes, see http:/ /cs246.stanford.edu
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