
An Introduction to Serial Link Manipulators

Frank Dellaert
Center for Robotics and Intelligent Machines

Georgia Institute of Technology

This note is a tutorial on serial link manipulators, giving my own take on the
material in the texts by Murray, Li, and Sastry [4] and Peter Corke [1]. I start
with simple planar manipulators with only revolute joints, to develop intuition for
how forward kinematics can be implemented by concatenating a chain of rigid
transforms. I then show how using exponential maps of twists, while an advanced
concept, make describing robot arms much easier and more convenient. After that,
it is a simple matter to generalize everything to 3D and include prismatic joints.
Finally, I also have an extensive section on inverse kinematics and some Jacobian-
based cartesian trajectory control.

1 Serial Link Manipulators

This section describes the basic concepts, closely following [4, 1].
A serial link manipulator has several links, numbered 0 to n, connected by

joints, numbered 1 to n. Joint j connects link j−1 to link j. We will only consider
either a revolute joint with a joint angle θj , or a prismatic joint with a link offset
dj . More complex joints can be described as combinations of these basic joints.

We can treat both revolute and prismatic joins uniformly by introducing the
concept of a generalized joint coordinate qj , and specifying the joint type using
a string, e.g., the classical Puma robot is RRRRRR, and the SCARA pick and
place robot is RRRP. The vector q ∈ Q of these generalized joint coordinates is
also called the pose of the manipulator, where Q is called the joint space of the
manipulator.

There are two more coordinate frames to consider: the base frame S, usually
attached directly to link 0, and the tool frame T , attached to the end-effector of the
robot. The tool frame T moves when the joints move.

1



2 Planar Manipulators

Figure 2.1: Top: the rest state of a planar RRR serial manipulator. Bottom: actuat-
ing the three degrees of freedom of this robot, the figure respectively shows θ3, θ2,
and θ1.

All essential concepts can be easily developed for 2D or planar manipulators
with revolute joints only, an example of which is shown in Figure 2.1. The top
panel shows the manipulator at rest, along with five 2D coordinate frames: the
base frame S, the tool frame T , and one coordinate frame for each of the three
links, situated at each joint. Note that at rest, the first link is rotated by π/2. For
this RRR manipulator, the generalized joint coordinates are q =

[
θ1 θ2 θ3

]T ,
and the effect of changing each individual joint angle θj is shown at the bottom of
the figure.

Later I generalize to 3D and prismatic joints, but for now we only need some
plane geometry, which is developed below.

2



3 Some Geometry for Planar Manipulators

In robot manipulators, the pose of the end-effector or tool is computed by concate-
nating several rigid transforms. Let pa be the 2D coordinates of a point in frame
A, and pb the coordinates of the same point in the frame B. We can transform pa

to pb by a 2D rigid transform ξb
a, which is a rotation followed by a 2D translation,

pb = ξb
a ⊗ pa ∆= Rb

ap
a + tba

with ξb
a

∆= (Rb
a, t

b
a), where Rb

a ∈ SO(2) and tba ∈ R2. In all of the above, a
subscript A indicates the frame we are transforming from, and the superscript B
indicates the frame we are transforming to. In well-formed equations, subscripts
on one symbol match the superscript of the next symbol.

The set of 2D rigid transforms forms a group, where the group operation cor-
responding to composition of two rigid 2D transforms is be defined as

ξc
a = ξc

b ⊕ ξb
a = (Rc

b, tcb) ⊕
(
Rb

a, tba

)
∆=

(
Rc

bR
b
a, Rc

bt
b
a + tcb

)
(3.1)

The group of rotation-translation pairs ξ with this group operation is called the
special Euclidean group SE(2). It has an identity element e = (I, 0), and the
inverse of a transform ξ = (R, t) is given by ξ−1 = (RT ,−RT t).

2D rigid transforms can be viewed as a subgroup of a general linear group of
degree 3, i.e., SE(2) ⊂ GL(3). This can be done by embedding the rotation and
translation into a 3 × 3 invertible matrix defined as

T b
a =

[
Rb

a tba
0 1

]
With this embedding you can verify that matrix multiplication implements compo-
sition, as in Equation 3.1:

T c
b T b

a =
[

Rc
b tcb

0 1

] [
Rb

a tba
0 1

]
=

[
Rc

bR
b
a Rc

bt
b
a + tcb

0 1

]
= T c

a

By similarly embedding 2D points in a three-vector, a 2D rigid transform acting on
a point can be implemented by matrix-vector multiplication:[

Rb
a tba

0 1

] [
pa

1

]
=

[
Rb

ap
a + tba
1

]
In what follows we will work with these transform matrices exclusively.

3



4 Forward Kinematics

The problem of forward kinematics can now be stated [4]:

Given a set of generalized joint coordinates q ∈ Q, we wish to de-
termine the pose T s

t (q) of the tool frame T relative to the base frame
S.

We define a link coordinate frame T s
j (q) for every link j, and we define the link

coordinate frame T s
0 to be identical to the base frame S. Since the tool frame T

moves with link n, we have

T s
t (q) = T s

n(q)Xn
t

where Xn
t specifies the unchanging pose of the tool T in the frame of link n. The

link coordinate frame T s
n(q) itself can be expressed recursively as

T s
n(q) = T s

n−1(q1 . . . qn−1)Tn−1
n (qn),

finally yielding

T s
t (q) = T s

1 (q1) . . . T j−1
j (qj) . . . Tn−1

n (qn)Xn
t . (4.1)

5 Describing Serial Manipulators

Equation 4.1 is correct but we need to tie it to the robot’s geometry. If we agree on
making the link coordinate frame T s

j (q) coincide with joint axis j and fixed to link
j, then the link-to-link transform T j−1

j (qj) can written as

T j−1
j (qj) = Xj−1

j Zj
j (qj)

where Xj−1
j is a fixed transform telling us where joint j is located in the coordinate

frame of the previous link, and Zj
j (qj) represents the transform at the joint itself,

parameterized by the generalized joint coordinate qj . Substituting this into 4.1
yields

T s
t (q) = Xs

1Z1
1 (q1) . . . Xj−1

j Zj
j (qj) . . . Xn−1

n Zn
n (qn)Xn

t (5.1)

For planar revolute joints, the Zj
j (q) transform can always be made of the form

Zj
j (q) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (5.2)

4



possibly with an offset applied to the joint angle. Most often the coordinate frames
are chosen such that the Xj−1

j transforms are as simple as possible.

Figure 5.1: Example of simple RRR manipulator with all three joints actuated:
θ1 = −30º, θ2 = −45º, and θ3 = −90º, respectively.

As an example, for the simple planar RRR manipulator we have

T s
t (θ1, θ2, θ3) =

{
Xs

1Z1
1 (θ1)

}{
X1

2Z2
2 (θj)

}{
X2

3Z3
3 (θn)

}
X3

t

I chose the first joint coordinate frames as rotated by 90 degrees, which takes care
of the joint angle offset, and chose the tool pose with respect to the third link frame
as 2.5 m. along the x-axis:

Xs
1 =

 0 −1 0
1 0 0
0 0 1

 and X3
t =

 1 0 2.5
0 1 0
0 0 1


The next two transforms are simply translations along the link’s X axis:

X1
2 =

 1 0 3.5
0 1 0
0 0 1

 and X2
3 =

 1 0 3.5
0 1 0
0 0 1


When multiplied out, we obtain

T s
t (q) =

 − sinβ − cos β −3.5 sin θ1 − 3.5 sin α − 2.5 sin β
cos β − sinβ 3.5 cos θ1 + 3.5 cos α + 3.5 cos β

0 0 1

 (5.3)

with α = θ1 + θ2 and β = θ1 + θ2 + θ3, the latter being the tool orientation with
respect to rest.

5



6 Product of Exponentials

The above exposition is cumbersome in that it involves a lot of intermediate coor-
dinate frames. Murray et. al. [4] developed a different approach that only involves
two coordinate frames: the base frame S and the tool frame T . In addition, it is
very easy to determine the parameters corresponding to each joint. The end-result
will express the forward kinematics as a product of exponentials (POE) of twists,
which we define below for the planar case.

6.1 2D Twists

The idea behind the product of exponentials formula is to think about the rotation
of 2D space around a joint. In particular, we want to find the rigid transform T s

s (θ)
that takes points in frame S to rotated points in the same frame. If the joint axis
happens to be the origin, then the corresponding 3 × 3 matrix is very easy to write
down,

T s
s (θ) =

[
R(θ) 0

0 1

]
(6.1)

where the 2 × 2 rotation matrix R(θ) is given as usual:

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
When the joint axis is not the origin but some arbitrary point p, let us think of what
should happen to a 2D point q. The answer is easy:[

q′x
q′y

]
=

[
px

py

]
+

[
cos θ − sin θ
sin θ cos θ

] [
qx − px

qy − py

]
We can write this elegantly in the language of transform matrices by conjugating
Equation 6.1 with a translation T s

p to and from the joint axis p:

T s
s (θ) = T s

p

{
T p

p (θ)
} (

T s
p

)−1 =
[

I p
0 1

] [
R(θ) 0

0 1

] [
I −p
0 1

]
(6.2)

The above is a special case of the exponential map exp : R2 → SE(2), which
maps a 2D twist ξ̇ = (vx, vyω) to a 2D rigid transform exp

(
ξ̇t

)
. The expression

for arbitrary twists is is given in the appendix, but it is more complicated than we
need. For use in forward kinematics we only work with unit twists ξ̄, with ω = 1.
For revolute joints, the twist that generates the rotation around the joint axis p is
the unit twist ξ̄ = (py,−px, 1).

6



Figure 6.1: The effect of a twist around joint 3 on link 3.

6.2 Example

To illustrate the idea with the planar example, let us look at a single joint, say joint
3. Since the joint axis in rest is at (0, 7), the corresponding twist is ξ̄3 = (7, 0, 1),
with associated transform matrix given by

T s
s (θ3) = exp

(
ξ̄3θ3

)
=

 1 0 0
0 1 7
0 0 1

 cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1

 1 0 0
0 1 −7
0 0 1


=

 cos θ3 − sin θ3 7 sin θ3

sin θ3 cos θ3 7(1 − cos θ3)
0 0 1


If we view the transform exp

(
ξ̄3θ3

)
as acting on all points expressed in the base

frame S, then it also applies to the entire link 3. This is illustrated in Figure 6.1,
where the first panel shows the two last links of the arm in the rest configuration,
and the next panels show the effect of the global transform.

In forward kinematics we are mostly interested in the pose of the tool. Hence,
if T s

t (0) is the tool pose for a zero joint angle, then it follows that for a non-zero
angle we have

T s
t (θ3) = T s

s (θ3) T s
t (0) = exp

(
ξ̄3θ3

)
T s

t (0)

Now we can ask what happens if we move joint 2. Since the joint axis in rest
is at (0, 3.5), the corresponding twist is ξ̄2 = (3.5, 0, 1), with associated transform
matrix

T s
s (θ2) = exp

(
ξ̄2θ2

)
=

 cos θ2 − sin θ2 3.5 sin θ2

sin θ2 cos θ2 3.5(1 − cos θ2)
0 0 1


7



Figure 6.2: The effect of a twist around joint 2, on links 2 and 3.

In Figure 6.2, I show the effect of the twist exponential map exp
(
ξ̄2θ2

)
on the last

two links. Now, since a twist acts on the entire space, if we apply it to the tool
frame T s

t (θ3) after it has been moved by exp
(
ξ̄3θ3

)
, it stands to reason that the

effect of moving the two last joints is given by

T s
t (θ2, θ3) = exp

(
ξ̄2θ2

)
T s

t (θ3) = exp
(
ξ̄2θ2

) {
exp

(
ξ̄3θ3

)
T s

t (0)
}

This formula generalizes in the obvious way for the entire joint configuration,

T s
t (q) = exp

(
ξ̄1θ1

)
exp

(
ξ̄2θ2

)
exp

(
ξ̄3θ3

)
T s

t (0) (6.3)

where the last remaining transform exp
(
ξ̄1θ1

)
is of the form 6.1, as the axis of the

first joint is the origin. The tool at rest is given by

T s
t (0) =

 0 −1 0
1 0 9.5
0 0 1


When multiplied out, we get exactly the same as in Equation 5.3.

6.3 General Case

In general, for any serial manipulator with n joints, we have the following product
of exponentials expression for the forward kinematics,

T s
t (q) = exp

(
ξ̄1θ1

)
. . . exp

(
ξ̄jθj

)
. . . exp

(
ξ̄nθn

)
T s

t (0) (6.4)

and, while the left-to-right order has to follow the manipulator structure, the for-
mula above does not depend on the order in which the actual joints are actuated.

8



7 Spatial Manipulators

The story above generalizes almost entirely to three dimensions. Below we first
discuss 3D rotations and rigid transforms, and then generalize the three forward
kinematics equations we discussed so far.

7.1 Rotations in 3D

Rotating a point in 3D around the origin from a frame a to a rotated frame b can be
done by multiplying with a 3 × 3 orthonormal rotation matrix

pa = Rb
ap

a

where the indices on Rb
a indicate the source and destination frames. The columns

of Rb
a represent the axes of frame a in the b coordinate frame:

Rb
a =

[
x̂b

a ŷb
a ẑb

a

]
The 3D rotations together with composition constitute the special orthogonal

group SO(3). It is made up of all 3× 3 orthonormal matrices with determinant 1,
with matrix multiplication implementing composition. However, 3D rotations do
not commute, i.e., in general R2R1 ̸= R1R2.

7.2 3D Rigid transforms

A point in 3D can be transformed by a 3D rigid transform, which is a 3D rotation
followed by a 3D translation,

pb = Rb
ap

a + tba

with Rb
a ∈ SO(3) and tba ∈ R3. We denote this transform by T b

a
∆=

(
Rb

a, tba
)
. The

special Euclidean group SE(3), with the group operation defined similarly as in
Equation 3.1. Moreover, the group SE(3) is a subgroup of a general linear group
GL(4) of degree 4, by embedding the rotation and translation into a 4×4 invertible
matrix defined as

T b
a =

[
Rb

a tba
0 1

]
Again, by embedding 3D points in a four-vector, a 3D rigid transform acting on a
point can be implemented by matrix-vector multiplication:[

Rb
a tba

0 1

] [
pa

1

]
=

[
Rb

ap
a + tba
1

]

9



7.3 Kinematic Chains in Three Dimensions

In three dimensions the matrices are now 4 × 4, but exactly the same expressions
are use to describe a kinematic chain:

T s
t (q) = T s

1 (q1) . . . T j−1
j (qj) . . . Tn−1

n (qn)Xn
t . (7.1)

and to describe any serial manipulator we can again alternate fixed link transforms
Xj−1

j and parameterized joint transforms Zj
j (qj):

T s
t (q) = Xs

1Z1
1 (q1) . . . Xj−1

j Zj
j (qj) . . . Xn−1

n Zn
n (qn)Xn

t (7.2)

In 3D we typically obey the convention that the axis of rotation is chosen to be the
Z-axis, hence the suggestive naming of the corresponding matrix parameterized
by a joint angle. We can now also introduce prismatic joints, which are typically
parameterized as translations along the Z-axis.

7.4 Product of Exponentials in 3D

To generalize the product of exponentials formula, we need the concept of a 3D
unit twist ξ̄, which consist of an axis of rotation ω̄ combined with a linear motion
vector v̄, which defines a rotational or translational motion around the joint.

For a prismatic joint, the twist is simply ξ̄ = (0, v̄), with v̄ a specifying the
direction of motion, and the exponential map is just a translation:

exp
(
ξ̄t

)
=

[
I v̄t
0 1

]
For a revolute joint, the twist is given by ξ̄ = (ω̄, p × ω̄), where ω̄ is a unit vector
specifying the axis of rotation, and p is any point on the joint axis. In this case the
exponential map simplifies to

exp
(
ξ̄θ

)
=

[
I p
0 1

] [
R(ω̄θ) 0

0 1

] [
I −p
0 1

]
The general formula for the rotation matrix R(ω̄θ) is given in the appendix, but is
easy whenever the rotation axis ω̄ is aligned with a coordinate axis. For example,
for a rotation around the Z-axis, i.e., ω = [0, 0, 1]T we have

R(ω̄θ) = R([0, 0, θ]T ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


10



and similarly, for respectively the X-axis and Y-axis, we have

R([θ, 0, 0]T ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ



R([0, θ, 0]T ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Finally, we obtain the same product of exponentials as in the planar case,

T s
t (q) = exp

(
ξ̄1q1

)
. . . exp

(
ξ̄jqj

)
. . . exp

(
ξ̄nqn

)
T s

t (0) (7.3)

7.5 Detailed Example: The Pincher Robot

Figure 7.1: Pincher robot at rest, with all joint angles at 0. The chosen base frame
S and tool frame T are shown as RGB coordinate frames.

The Pincher robot is shown in Figure 7.1 in its rest configuration. I chose to put
the base frame S at the intersection of the vertical joint 1 axis and the horizontal

11



joint 2 axis, which makes the transforms for the first two joint axes easy, with twists
ξ̄1 = (0, 0, 1, 0, 0, 0) and ξ̄2 = (1, 0, 0, 0, 0, 0), respectively:

eξ̄1θ1 =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1

 and eξ̄2θ2 =


1 0 0 0
0 cos θ2 − sin θ2 0
0 sin θ2 cos θ2 0
0 0 0 1


Note that the joint angles are measured from the configuration at rest, and positive
joint angles will make the arm lean backwards.

The third joint axis, at rest (all servos at 512) is 10.5 cm above the second
one. We can just conjugate a rotation around the x-axis, corresponding to the twist
ξ̄3 = (1, 0, 0, 0, 10.5, 0):

eξ̄3θ3 =


1 0 0 0
0 cos θ3 − sin θ3 10.5 sin θ3

0 sin (θ3) cos (θ3) 10.5(1 − cos θ3)
0 0 0 1


The fourth joint is the same, except it is higher, with twist ξ̄4 = (1, 0, 0, 0, 21, 0):

eξ̄4θ4 =


1 0 0 0
0 cos θ4 − sin θ4 21 sin θ4

0 sin θ4 cos θ4 21(1 − cos θ4)
0 0 0 1


Finally, the fifth joint is the end-effector and is not included in the inverse kinemat-
ics. The tool frame, at rest, is 6.5 cm above the fourth joint:

T s
t (0) =


1 0 0 0
0 1 0 0
0 0 1 27.5
0 0 0 1


Multiplying all these together, we get the forward kinematics as follows:

T s
t (q) = exp

(
ξ̄1θ1

)
exp

(
ξ̄2θ2

)
exp

(
ξ̄3θ3

)
exp

(
ξ̄4θ4

)
T s

t (0) =
cos θ1 − sin θ1 cos β sin θ1 sinβ 1

2 sin θ1 (21 sin θ2 + 21 sin α + 13 sin β)
sin θ1 cos θ1 cos β − cos θ1 sin β −1

2 cos θ1 (21 sin θ2 + 21 sin α + 13 sin β)
0 sin β cos β 1

2 (21 cos θ2 + 21 cos α + 13 cos β)
0 0 0 1


12



where α = θ2 + θ3 and β = θ2 + θ3 + θ4. It is easy to see that the first joint
angle θ1 rotates the entire arm around the vertical, and that the other angles dictate
the kinematics in that rotated frame. In fact, not coincidentally, when setting θ1 to
zero we can recognize exactly the same structure as the three-link kinematics chain
from Equation 5.3, in the Y-Z plane:

T s
t (0, θ2, θ3, θ4) =


1 0 0 0
0 cos β − sin β −1

2 (21 sin θ2 + 21 sin α + 13 sin β)
0 sin β cos β 1

2 (21 cos θ2 + 21 cos α + 13 cos β)
0 0 0 1


It is clear from this that, with three joints in this plane and the rotation around joint
1, we can reach any 3D pose within the workspace. However, we have no way of
rotating the tool around its Z-axis.

Figure 7.2: The pose of the robot with joint angles q = (−45º,−45º,−45º, 0).

To test the FK, let us plug in some angles:

T s
t (−45º,−45º,−45º, 0) =


1√
2

0 1√
2

17.3
− 1√

2
0 1√

2
17.3

0 −1 0 7.4
0 0 0 1


It can be verified in figure 7.2 (and I verified it in reality) that the tool is indeed
horizontal now, rotated 45 degrees to the left, and is at position (17.3, 17.3, 7.4)
with respect to the chosen base frame.

13



8 Inverse Kinematics

8.1 The IK Problem

Inverse kinematics (IK) is the process of finding joint angles given a desired end-
effector pose Tdesired, i.e., solve Equation 7.1 for q:

T s
t (q) = Tdesired

If Tdesired is outside the workspace of the robot, there is no solution, otherwise
there might be a unique solution or multiple solutions.

The essential concepts can be explained by using a two-link planar manipulator.
In this simple case, the forward kinematics are given by{

x(q) = l1 cos θ1 + l2 cos (θ1 + θ2)
y(q) = l1 sin θ1 + l2 sin (θ1 + θ2)

(8.1)

The inverse kinematics problem is then to find the joint angles q = (θ1, θ2) such
that (x(q), y(q)) = (xd, yd), the desired end-effector position.

8.2 Closed-Form Solutions

Many industrial manipulators have closed-form solutions, and there are several
ways to derive these. In this simple 2-link case above, a closed form IK solution is
possible, although generally non-unique, within a radius (l1 + l2) of the origin. I
adapted a solution from John Hollerbach’s 2008 lecture notes, for l1 = l2 = L: we
first compute the second joint angle

θ2 = ±2 arctan

√
(2L)2

r2
− 1 (8.2)

with r2 = x2
d + y2

d, after which we compute the first joint angle

θ1 = atan2(yd, xd) − atan2 (L sin θ2, L(1 + cos θ2)) −
π

2
(8.3)

Note that Equation 8.2 is not defined if r2 > (2L)2, which corresponds to a desired
position that is out-of-range.

To extend this to the three-link example, we add a desired tool orientation θd.
Note from the forward kinematics Equation 5.3 that β = θd − π/2, and we can
adapt Equation 8.3 to accommodate for the joint 2 axis offset:

θ1 = atan2(yd−2.5 cos β, xd+2.5 sin β)−atan2 (3.5 sin θ2, 3.5(1 + cos θ2))−
π

2

14



Figure 8.1: Two IK solutions for the planar three-link arm, for tool pose
(xd, yd, θd) = (5, 5, 0), with joint angles q = (−63.6º, 74.0º,−100.4º) and
q = (10.4º,−74.0º,−26.4º), corresponding respectively to choosing a positive
and negative sign in Equation 8.2.

Then, the wrist joint angle is easily computed as

θ3 = θd − θ1 − θ2 − π/2

Figure 8.1 shows two examples corresponding to choosing a different sign in Equa-
tion 8.2 for the same desired pose (xd, yd, θd) = (5, 5, 0), illustrating the fact that
inverse kinematics is not a one-on-one mapping, but that multiple solutions might
exist, even for a non-redundant manipulator.

8.3 Iterative Methods

As discussed, many industrial manipulators have closed-form solutions, but they
are still an area of active research and general solutions are as yet elusive. There
exist, however, iterative methods to solve the IK problem.

One approach is to find the joint angles q that minimize the error between
desired end-effector position pd and computed position p(q). For example, for the
simple 2-link arm we would try to minimize

E(q) ∆=
1
2
∥pd − p(q)∥2 =

1
2

(xd − x(q))2 +
1
2

(yd − y(q))2 (8.4)

However, this is a non-linear minimization problem, as x(q) and y(q) are typically
non-linear functions of the joint-angles (at least for rotational joints). Linear least-
squares problems are easier to solve, which motivates us to start with an initial

15



guess q for the joint angles, and to linearize the forward kinematics around this
pose:

p(q + δq) ≈ p(q) + J(q)δq (8.5)

The quantity J(q) above is the manipulator Jacobian, describing how a change in
joint angles causes a change in the end-effector tool. In general, the Jacobian is an
m×n matrix where n is the number of joints, m = 3 for planar manipulators, and
m = 6 for spatial manipulators. Each column of J(q) describes how the pose of
the end-effector changes when we make a small change in the corresponding joint
angle. A general treatment is outside the scope of this tutorial, but in the simple 2-
link planar manipulator, the Jacobian for the 2D position alone is easy to calculate
and is a 2 × 2 matrix:

J(q) ∆=

[
∂x(q)
∂θ1

∂x(q)
∂θ2

∂y(q)
∂θ1

∂y(q)
∂θ2

]
=

[
−y(q) −l2 sin (θ1 + θ2)
x(q) l2 cos (θ1 + θ2)

]
Substituting the approximation 8.5 into the objective 8.4 we obtain

E(q + δq) ≈ 1
2
∥ (pd − p(q)) − Jδq∥2 (8.6)

where the dependance of J on q is implied, for notational simplicity. The above
says that we can make the position error e(q) ∆= pd−p(q) go to zero by calculating
a change δq in joint angles, such that

Jδq = pd − p(q)

For a non-redundant manipulator the Jacobian J(q) is square, and its inverse gen-
erally exists (except at the boundaries of the workspace). Hence, we could try to
invert it immediately:

δq = J−1 (pd − p(q)) (8.7)

However, because the forward kinematics are non-linear, we might have to iterate
this a few times, and the process might in fact diverge.

8.4 Damped Least-Squares

A safer approach is to impose some penalty for taking steps δq that are too large,
which can be done by adding a term to the objective function 8.6:

E(q + δq) ≈ 1
2
∥ (pd − p(q)) − Jδq∥2 +

1
2
∥λδq∥2 (8.8)

16



This can be solved for δq by setting the derivative of E in Equation 8.8 to 0,

−JT ((pd − p(q)) − Jδq) + λ2δq = 0

which, after simply re-arranging, leads to a damped least-squares iteration:

δq =
(
JT J + λ2I

)−1
JT (pd − p(q)) (8.9)

The value of λ is chosen as to make the iterative process converge, and can even
be increased automatically when a low value is seen to lead to divergence. On the
other hand, too high a value might lead to slow convergence.

One strategy is to proceed very cautiously, i.e., make λ very large, in which
case Equation 8.9 essentially becomes gradient descent:

δq = λ−2JT (pd − p(q)) (8.10)

Because it only involves JT , this is also called the transpose Jacobian method,
but it has the disadvantage of converging very slowly, see Fig. 8.2. Another strat-
egy is to use no damping at all, i.e., set λ = 0, in which case Equation 8.9 resorts
to using the pseudo-inverse J†,

δq =
(
JT J

)−1
JT (pd − p(q)) = J† (pd − p(q)) (8.11)

where J† ∆=
(
JT J

)−1
JT .

A method that picks λ automatically is the Levenberg-Marquardt method:
start with a high λ, and then reduce it by a constant factor at every iteration until
the error goes up instead of down: in that case undo the change in λ and try again.

8.5 Iterative IK Methods Summary

In summary, all iterative inverse kinematics approaches share the same structure:

Algorithm 1 The basic iterative IK algorithm.
1: function ITERATIVEIK(xd)
2: q ← q0 ◃ Guess an initial value for joint angles
3: while E(q) ̸= 0 do ◃ While not converged
4: e ← pd − p(q) ◃ Calculate error between desired and computed pose
5: Calculate δq = f(J(q), e) ◃ Using Eqn. (8.7), (8.9), (8.10), or (8.11)
6: q ← q + δq ◃ Update the joint angles q

7: return q ◃ Joint angles yielding pd

17



Figure 8.2: Left: a highly redundant planar manipulator. Right: convergence of
iterative IK with the transpose Jacobian method (see text).

8.6 Redundant Manipulators

One advantage of the least-squares approaches above is that they also work for
n > m, i.e., for redundant manipulators. An example of a highly redundant
planar manipulator is shown in Figure 8.2.

In a redundant manipulator there are typically an infinite number of ways to
attain a desired end-effector pose. The methods above arbitrarily pick one of the
solutions. However, the extra degrees of freedom might be put to other uses, as
well: for example, we might want to favor configurations that require less energy
to maintain, or avoid singularities, or even - in the case of using IK for animation
- follow a certain style [2]. This can be done by adding an additional, user-defined
penalty term Euser(q) to the error function that penalizes certain joint configura-
tions and favors others:

E(q) ∆=
2 1

2
∥pd − p(q)∥2 + Euser(q)

As long as the derivative of Euser(q) is available, it is easy to incorporate this extra
information.

A simple example is to make the joint angles as small as possible, i.e., penal-
izing a deviation from the rest state, leading to

E(q) ∆=
2 1

2
∥pd − p(q)∥2 +

1
2
∥βq∥2

After linearizing, we have

E(q + δq) ≈ 1
2
∥ (pd − p(q)) − Jδq∥2 +

1
2
∥β(q + δq)∥2

18



which yields the following update,

δq =
(
JT J + β2I

)−1 (
JT (pd − p(q)) − β2q

)
which looks very much like the damped least-squares iteration (8.9), except that
now there is an extra error term that drives the joint angles to zero.

Finally, a user could also impose hard equality or inequality constraints. One
such constraint is that the robot should never self-intersect or collide with objects
in its environment. We then get into the realm of fully fledged motion planning,
which is a prolific and active area of research.

8.7 A Graphical View of the Manipulator Jacobian

For the three-link planar robot the Jacobian J(q) can be computed as −3.5 cos θ1 − 3.5 cos α − 2.5 cos β −3.5 cos α − 2.5 cos β −2.5 cos β
−3.5 sin θ1 − 3.5 sin α − 2.5 sin β −3.5 sin α − 2.5 sin β −2.5 sin β

1 1 1


The third row is always all 1 in a planar manipulator: the tool orientation changes
exactly the same as any joint you change (possibly in the opposite direction, in
which case we would have a -1 instead).

Figure 8.3: The velocities induced by a change in joint angle (red=θ1, green=θ2,
blue=θ3), for joint angles qleft = (−90º, 90º, 0º) and qright = (−90º, 90º,−90º).

A graphical way to appreciate what a Jacobian means physically is to view
each column as a velocity that the tool will move with, given a unit change in

19



the corresponding joint. Figure 8.3 above shows the Jacobian as a set of three
arrows: red for joint 1, green for joint 2, and blue for joint 3. Clearly, the Jacobian
J(q) depends on the current joint angles q. Hopefully, you see the pattern: these
velocities are always perpendicular to the vector to the joint axis, and proportional
to the distance to the joint axis.

8.8 Trajectories in Cartesian Space

Figure 8.4: Joint-space motion control.

Jacobians are also useful in the task of generating trajectories in cartesian space
rather than in joint space. Trajectory following is an important capability for ma-
nipulator robots, and three main approaches are common: (a) trajectory replay, (b)
joint space motion control, and (c) cartesian space motion control. The first relies
on an operator to perform the motion first, after which the robot simply replays
the sequence, and is akin to motion-capture in movies. Even then, to interpolate
between waypoints obtained by robot programming, one of the two other methods
is needed. Joint space motion control is the easiest, and simply applies PID control
or linear interpolation in joint space to move from one waypoint to the other. An
example of this is shown in Figure 8.4 for the three-link planar manipulator.

The most difficult is cartesian control, where we want the robot to follow a
well-defined path in cartesian space, most often a straight line or some interpolating
spline. One method to do so is to calculate an inverse kinematics solution at many
intermediate waypoints and apply joint control again, to get from one to the other.
However, there is a method by which we can avoid inverse kinematics altogether,

20



Figure 8.5: Cartesian space motion control.

using the manipulator Jacobian. Indeed, we have the following relationship:

ṗ
∆=

dp(q)
dt

= J(q)q̇

For a non-redundant manipulator, we can simply invert te Jacobian to calculate the
joint space velocities corresponding to a given end-effector velocity:

q̇ = J(q)−1ṗ

One way to use this is in a simple proportional control, i.e.,

q̇ = J(q)−1Kp(pd − p(q)),

and an example of this is shown in Figure 8.5 for the three-link planar robot. The
inverse Jacobian J(q)−1 can be calculated analytically and is given by

csc θ2

3.5

 − sinα cos α 2.5 sin(q3)
sin θ1 + sinα − cos θ1 − cos α −2.5 sin(θ2) sin(θ2/2+θ3)

sin(θ2/2)
− sin θ1 cos θ1 2.5 sin(θ2 + θ3) + 3.5 sin(θ2)


where, as before, α = θ1 + θ2 and β = θ1 + θ2 + θ3. However, in an implemen-
tation one might choose to numerically invert the Jacobian, which shares many
calculations with the forward kinematics (5.3).

21



A Appendix: Denavit-Hartenberg Conventions

No introduction to serial manipulators is complete without mentioning the Denavit-
Hartenberg convention, which is a particular choice of coordinate frames to make
equation 7.2 as simple as possible. In particular, as suggested by the alternation of
matrices named X and Z, we ensure that

1. all joint axes are aligned with the Z-axis, and the corresponding transform is
parameterized by two parameters, a rotation θ around Z and a displacement
d along Z;

2. the X-axis is chosen to be the common perpendicular between two suc-
cessive joint axes, and the link geometry is described by two parameters, a
rotation α around X and a displacement a along X .

It might be surprising that only four parameters (θ, d, α, a) are needed to specify
the location of one frame relative to another. However, these frames are special
since they have two independent conditions imposed: the X-axis intersects the
next Z-axis, and is perpendicular to it [3].

Subject to these two constraints, there are two popular variants in use, the prox-
imal and distal variants, that differ on where they put the coordinate frame on the
link. In the distal variant, the link coordinate frame T s

j (q) is made to coincide with
joint axis j + 1, and link frame n is defined to be identical to the tool frame. This
convention is a bit awkward to work with.

In the simpler, proximal variant, also denoted the modified Denavit-Hartenberg
convention in [1], the link coordinate frame T s

j (q) is made to coincide with joint
axis j, and the transform T j−1

j (qj) between links is written as:

T j−1
j (qj) = Xj−1

j (αj−1, aj−1)Z
j
j (θj , dj)

where qj is either θj for a revolute joint, or to dj for a prismatic joint, and

Xj−1
j (αj−1, aj−1) = TRx(αj−1)Tx(aj−1) Zj

j (θj , dj) = TRz(θj)Tz(dj)

B Appendix: General Twist Formulas

B.1 2D Twists

A 2D twist1 is the derivative of a 2D rigid transform, ξ̇ =
(
ẋ, ẏ, θ̇

)
. The first two

components make up the linear velocity v, and the last component is the angular
1For purists: in contrast to [4], I define a twist ξ̇ as any element in the Lie algebra se(2) or se(3),

and use the term unit twist ξ̄ for the case where ω = 1 (or ∥ω∥ = 1, in se(3)).

22



velocity ω. Hence, we also frequently write ξ̇ = (v, ω). There are two complimen-
tary ways of deriving the the exponential map exp : R2 → SE(2) that maps a 2D
twist ξ̇ = (v, ω) to a 2D rigid transform.

Figure B.1: Integrating a constant twist forward traces out a circular arc.

First, a pose undergoing a constant twist ξ̇ traces out a circular trajectory with
radius R = ∥v∥/ω, as illustrated in Figure B.1. Starting from the identity e, after
some time t we obtain, as can be worked out from the figure, and is given as a pair
below:

exp
(
ξ̇t

)
=

([
cos ωt − sinωt
sin ωt cos ωt

]
,
1
ω

[
vx −vy

vy vx

] [
sinωt

1 − cos ωt

])
(B.1)

where the 2 × 2 rotation matrix R(θ) is given as usual:

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
The second way uses conjugation, as explained in the text, and makes use of the
fact that the instantaneous axis of rotation can be found for arbitrary twists as p =
v⊥/ω, where the ⊥ symbol denotes the orthogonal vector[

vx

vy

]⊥
∆=

[
−vy

vx

]
We then simply conjugate a rotation at the origin with a translation to p:

exp
(
ξ̇t

)
=

[
I v⊥/ω
0 1

] [
R(ωt) 0

0 1

] [
I −v⊥/ω
0 1

]
(B.2)

You can verify that the above and the circular arc expression B.1 are identical.

23



B.2 Twists in 3D

In 3D, a twist2 is given by an angular velocity ω and a linear velocity v

ξ̇
∆=

[
ω
v

]
For ω ̸= 0, the exponential map exp : R6 → SE(3) is given by

exp
(
ξ̇t

)
=

[
I p
0 1

] [
R(ω, t) ω

∥ω∥ht

0 1

] [
I −p
0 1

]
(B.3)

where p = (ω × v) /∥ω∥ is a point on the axis of the screw motion generated by

the twist, and h
∆= ωT v/∥ω∥ is its pitch, and the rotation matrix R(t) is given by

Rodrigues’ formula,

R(ω, t) = I + [ω]×
sin (∥ω∥t)

∥ω∥
+ [ω]2×

1− cos (∥ω∥t)
∥ω∥2

which calculates the 3D rotation matrix associated with spinning for a time t with
angular velocity ω, and [ω]× is a the skew symmetric matrix of ω.

The above might look more complicated than the 2D case, but is really but a
simple generalization of a circular arc in 2D to a screw motion in 3D.

C Appendix: Jacobians and Exponential Twists

Calculating the Jacobians of complex or highly redundant manipulators can be
fairly involved, but once again the product of exponential twists comes to the res-
cue. Let us examine the forward kinematics of the three-link planar manipulator
again, i.e., Equation 6.3:

T s
t (q) = exp

(
ξ̄1θ1

)
exp

(
ξ̄2θ2

)
exp

(
ξ̄3θ3

)
T s

t (0)

The partial derivative with respect to the first joint angle is

∂T s
t (q)

∂θ1
=

∂ exp
(
ξ̄1θ1

)
∂θ1

exp
(
ξ̄2θ2

)
exp

(
ξ̄3θ3

)
T s

t (0)

= ξ̂1T
s
t (q)

2Note we follow a different convention from [4] in that we reserve the first three components for
rotation, and the last three for translation.

24



where ξ̂ is a 4 × 4 matrix (the element of the Lie algebra se(2) corresponding to
ξ̄1) given by: [

[ω]× v
0 0

]
Similarly, with respect to the second joint angle we have

∂T s
t (q)

∂θ2
= exp

(
ξ̄1θ1

) ∂ exp
(
ξ̄2θ2

)
∂θ2

exp
(
ξ̄3θ3

)
T s

t (0)

= exp
(
ξ̄1θ1

)
ξ̂2 exp

(
ξ̄2θ2

)
exp

(
ξ̄3θ3

)
T s

t (0)

= exp
(
ξ̄1θ1

)
ξ̂2 exp

(
−ξ̄1θ1

)
T s

t (q)

In the last line we again see a conjugation: the derivative is given by ξ̂2, but acting
in the link frame exp

(
ξ̄1θ1

)
. It is easy to prove that

T ξ̂T−1 = ÂdT ξ̄

where AdT is the adjoint transformation associated with T = (R, t):

AdT ξ̄ =
[

R
[t]×R R

]
ξ̄

Hence, we can write

∂T s
t (q)

∂θ2
= ÂdT s

1
ξ̄2T

s
t (q), and also

∂T s
t (q)

∂θ3
= ÂdT s

2
ξ̄3T

s
t (q).

Generalizing, we have

ξ̂′i
∆= ̂AdT s

i−1
ξ̄i =

∂T s
t (q)

∂qi
T s

t (q)−1

Motivated by this, Murray et. al. [4, p. 116] define a spatial manipulator Jaco-
bian which consists of n twists transformed by the appropriate adjoints,

Js
st(q) =

[
ξ̄′1 ξ̄′2 . . . ξ̄′n

]
=

[
ξ̄1 AdT s

1
ξ̄2 . . . AdT s

n−1
ξ̄n

]
which is related but not identical to the Jacobians defined in Section 8.3. In partic-
ular, if J(q) is the Jacobian of position with respect to q, for every column Ji(q)
and twist ξ̄′i = (ω′, v′), we have

Ji(q)
∆=

∂p(q)
∂qi

= ω′
i × p(q) + v′ and hence ṗ(q) = (ω′

iqi) × p + v′q̇i

where p(q) is the position of the tool for generalized coordinate q. For rotation the
angular velocity induced by a changing q̇i is simply ω′

iq̇i. While the above may
at first seem complex, it leads to a simple algorithm to calculate the manipulator
Jacobians when the twists ξ̄i are known for each joint.

25



References

[1] Peter Corke. Robotics, Vision, and Control. Springer, 2011.

[2] K. Grochow, S.L. Martin, A. Hertzmann, and Z. Popović. Style-based inverse
kinematics. In SIGGRAPH, volume 23, pages 522–531. ACM, 2004.

[3] H. Lipkin. A note on Denavit-Hartenberg notation in robotics. In Proc. ASME
IDETC/CIE, pages 921–926, 2005.

[4] R.M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

26


