
Project 1
Overview, Guidelines, and JavaCC Tutorial

1

Friday, February 1, 13

Project 1

• Due: Monday Feb 18 (2 weeks+1 weekend)

• Groups: 2-3 People

• Languages: Java, JavaCC (like yacc)

• Goal: Familiarize yourself with manipulating RA

• Project 1 update posted on of Jan 31

• Revisions to group submission instructions.

2

Friday, February 1, 13

Project 1: Grading

• Test cases are provided

•edu.buffalo.cse.sql.test.*

• Tests for both parts are provided

• Part 1: 60 pts (55 from provided tests)

• Part 2: 40 pts (35 from provided tests)

3

Friday, February 1, 13

Part 1

• Given: Data File(s), Relational Algebra Tree

• Compute: Evaluate the RA expression

• How? Use Naive In-Memory Algorithms

• Selection/Projection/Union: Basic Pipelined Impl.

• File Scan: Java IO (or NIO for better perf.)

• Join: Nested-Loop (or others for better perf.)

• Aggregates: Hash-table grouping

4

A Relational Algebra Interpreter

Friday, February 1, 13

5

Any Questions?

Image copyright: Paramount Pictures

Friday, February 1, 13

Part 1

6

Keep in mind that in Project 3,
performance will be important

So starting now can’t hurt.

Friday, February 1, 13

Part 1

7

1. Implement relational operators.

• The iterator interface is the simplest way.

• init(), readNext(), hasMore(), close()

2. Implement a translator to assemble your
relational operators from the RA plan.

3. Implement an evaluator for arithmetic
expressions.

Friday, February 1, 13

Projection Example

• ProjectionOperator(ColNames, Schema, Source)

 this.OutCols = ColNames.map(Schema.getIndex);

 this.Source = Source;

• hasNext()

 return this.Source.hasNext();

• readNext()

 Datum[] next = this.Source.readNext();

 return this.OutCols.map(next.get);

8

Friday, February 1, 13

Evaluating Arithmetic

9

+

A 3

*

2

Bindings
A → 5
B → 2

C → ‘Foo’

eval(node,bindings)
switch(node.type)
 case ‘*’:
 return eval(node.l)
 * eval(node.r)

 case const:
 return node.value

 case ‘+’: …

 case var:
 return bindings.get(
 node.var)

Friday, February 1, 13

Evaluating Arithmetic

9

+

A 3

*

2

Bindings
A → 5
B → 2

C → ‘Foo’

eval(node,bindings)
switch(node.type)
 case ‘*’:
 return eval(node.l)
 * eval(node.r)

 case const:
 return node.value

 case ‘+’: …

 case var:
 return bindings.get(
 node.var)

Friday, February 1, 13

Evaluating Arithmetic

9

+

A 3

*

2

Bindings
A → 5
B → 2

C → ‘Foo’

eval(node,bindings)
switch(node.type)
 case ‘*’:
 return eval(node.l)
 * eval(node.r)

 case const:
 return node.value

 case ‘+’: …

 case var:
 return bindings.get(
 node.var)

Friday, February 1, 13

Evaluating Arithmetic

9

+

A 3

*

2

Bindings
A → 5
B → 2

C → ‘Foo’

eval(node,bindings)
switch(node.type)
 case ‘*’:
 return eval(node.l)
 * eval(node.r)

 case const:
 return node.value

 case ‘+’: …

 case var:
 return bindings.get(
 node.var)

Friday, February 1, 13

Evaluating Arithmetic

9

+

A 3

*

2

Bindings
A → 5
B → 2

C → ‘Foo’

eval(node,bindings)
switch(node.type)
 case ‘*’:
 return eval(node.l)
 * eval(node.r)

 case const:
 return node.value

 case ‘+’: …

 case var:
 return bindings.get(
 node.var)

5 3

Friday, February 1, 13

Evaluating Arithmetic

9

+

A 3

*

2

Bindings
A → 5
B → 2

C → ‘Foo’

eval(node,bindings)
switch(node.type)
 case ‘*’:
 return eval(node.l)
 * eval(node.r)

 case const:
 return node.value

 case ‘+’: …

 case var:
 return bindings.get(
 node.var)

5 3

2 8

Friday, February 1, 13

Evaluating Arithmetic

9

+

A 3

*

2

Bindings
A → 5
B → 2

C → ‘Foo’

eval(node,bindings)
switch(node.type)
 case ‘*’:
 return eval(node.l)
 * eval(node.r)

 case const:
 return node.value

 case ‘+’: …

 case var:
 return bindings.get(
 node.var)

5 3

2 8

16

Friday, February 1, 13

10

Any Questions?

Image copyright: Paramount Pictures

Friday, February 1, 13

11

Part 2: Parsing SQL

• Design a Grammar for your language.

• Use a compiler compiler (e.g., Yacc, Bison, Javacc)

• Takes a grammar as input

• Generates “trees” for expressions in your language

• You specify how to interpret nodes in this tree.

Friday, February 1, 13

Grammars

12

A := BA | B | C

How do you specify a language?

An A is a B followed by an A, or just a B, or just a C

Friday, February 1, 13

B, C, BC, and BBBC are valid As
BCC is not valid, as although we can get ‘C’ as an A, no rule exists to let us prepend another
‘C’ before it.
CB is not valid, since we can only prepend ‘B’s to an ‘A’

Grammars

12

A := BA | B | C

How do you specify a language?

An A is a B followed by an A, or just a B, or just a C

Friday, February 1, 13

B, C, BC, and BBBC are valid As
BCC is not valid, as although we can get ‘C’ as an A, no rule exists to let us prepend another
‘C’ before it.
CB is not valid, since we can only prepend ‘B’s to an ‘A’

Grammars

12

A := BA | B | C

How do you specify a language?

An A is a B followed by an A, or just a B, or just a C

Friday, February 1, 13

B, C, BC, and BBBC are valid As
BCC is not valid, as although we can get ‘C’ as an A, no rule exists to let us prepend another
‘C’ before it.
CB is not valid, since we can only prepend ‘B’s to an ‘A’

Grammars

12

A := BA | B | C

How do you specify a language?

An A is a B followed by an A, or just a B, or just a C

Friday, February 1, 13

B, C, BC, and BBBC are valid As
BCC is not valid, as although we can get ‘C’ as an A, no rule exists to let us prepend another
‘C’ before it.
CB is not valid, since we can only prepend ‘B’s to an ‘A’

Grammars

12

A := BA | B | C

How do you specify a language?

An A is a B followed by an A, or just a B, or just a C

Friday, February 1, 13

B, C, BC, and BBBC are valid As
BCC is not valid, as although we can get ‘C’ as an A, no rule exists to let us prepend another
‘C’ before it.
CB is not valid, since we can only prepend ‘B’s to an ‘A’

Grammars

12

A := BA | B | C

How do you specify a language?

An A is a B followed by an A, or just a B, or just a C

Friday, February 1, 13

B, C, BC, and BBBC are valid As
BCC is not valid, as although we can get ‘C’ as an A, no rule exists to let us prepend another
‘C’ before it.
CB is not valid, since we can only prepend ‘B’s to an ‘A’

Grammars

12

A := BA | B | C

How do you specify a language?

B := ‘B’
C := ‘C’

Friday, February 1, 13

B, C, BC, and BBBC are valid As
BCC is not valid, as although we can get ‘C’ as an A, no rule exists to let us prepend another
‘C’ before it.
CB is not valid, since we can only prepend ‘B’s to an ‘A’

Grammars

12

A := BA | B | C

How do you specify a language?

B := ‘B’
C := ‘C’

‘B’ ‘C’

Which of the following are valid As?

‘BBBC’‘BC’ ‘CB’‘BCC’

Friday, February 1, 13

B, C, BC, and BBBC are valid As
BCC is not valid, as although we can get ‘C’ as an A, no rule exists to let us prepend another
‘C’ before it.
CB is not valid, since we can only prepend ‘B’s to an ‘A’

Group Exercise

13

Define a grammar for basic arithmetic using
addition, multiplication, and negation?

Friday, February 1, 13

Group Exercise

13

Define a grammar for basic arithmetic using
addition, multiplication, and negation?

Hint: This problem is underspecified.
What additional information do you need?

Friday, February 1, 13

Group Exercise

13

Define a grammar for basic arithmetic using
addition, multiplication, and negation?

Hint: This problem is underspecified.
What additional information do you need?

Use integers, and assume <INT> is defined

Friday, February 1, 13

Tokens

14

• Strings are complex!

• Tokenize strings first

• Simple, regular expression matching on
strings to make ‘tokens’.

• e.g., <INT> := /-?[0-9]+/

• An optional ‘-’, followed by ≥1 digits

• Build parse trees with tokens as leaves.

Friday, February 1, 13

JavaCC

15

• Java Compiler Compiler (Part of Sun JDK)

• Reads in a grammar file.

• Generates a Java class that parses your
language.

• The Java class can be compiled as normal.

• JavaCC files have a .jj suffix.

Friday, February 1, 13

A JavaCC .jj File

16

Header

Grammar Rules

Tokenizer Rules

Define code to explicitly copy into the java file

Declare rules each (roughly) of the form:
A := B | C | D | …

Declare all token types and how to identify them

Friday, February 1, 13

A JavaCC Header

17

PARSER_BEGIN([class])
package ...
import ...
...
public class [class] {
 ...
}
...
PARSER_END([class])

JavaCC
will insert
code here

Friday, February 1, 13

18

Any Questions?

Image copyright: Paramount Pictures

Friday, February 1, 13

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

A JavaCC Grammar Rule

19

Each JavaCC rule is a function definition

Friday, February 1, 13

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

A JavaCC Grammar Rule

19

Rule Name

Each JavaCC rule is a function definition

Friday, February 1, 13

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

A JavaCC Grammar Rule

19

Each JavaCC rule is a function definition

Rule
Body

Friday, February 1, 13

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

A JavaCC Grammar Rule

19

Rule Type

Each JavaCC rule is a function definition

Friday, February 1, 13

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

A JavaCC Grammar Rule

19

Rule
Header

Each JavaCC rule is a function definition

Friday, February 1, 13

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

A JavaCC Grammar Rule

19

Each JavaCC rule is a function definition

Rule Arguments

Friday, February 1, 13

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

A JavaCC Grammar Rule

19

Each JavaCC rule is a function definition
The Rule Body is a Pattern

Friday, February 1, 13

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

A JavaCC Grammar Rule

20

Rule NameRule Type

Rule
Header

Each JavaCC rule is a function definition

Rule
Body

The Rule Body is a Pattern

Rule Arguments

Friday, February 1, 13

A JavaCC Rule Pattern

21

[var =] <TOKEN>

Pattern :=

Meaning:
Match a token of the indicated type
optionally assign it to variable var

Note: var must be of the Java class Token
var.image is the string matched by the token’s regex

Friday, February 1, 13

A JavaCC Rule Pattern

22

i = <INT>

IntBase :=

Meaning: match an <INT> token
assign it to the variable i

EXAMPLE

Note: You’ll soon see how to use i to assign a
‘meaning’ to this token (i.e, an integer)

Friday, February 1, 13

A JavaCC Rule Pattern

23

[var =] Rule(args)

Pattern :=

Meaning:
Invoke the indicated rule (with arguments)

The pattern matches if the rule finds a match
Optionally assign the matched value to var

Note: var must be of the type ‘returned’ by Rule()

Friday, February 1, 13

A JavaCC Rule Pattern

24

Pattern1 Pattern2 Pattern3 …

Pattern :=

Meaning:
Match an input consisting of something
matching pattern 1, followed by a match
for pattern 2, followed by pattern 3, …

Friday, February 1, 13

A JavaCC Rule Pattern

25

s = Statement() <EOS>

Program :=

Meaning:
Find a match for the ‘Statement’ rule

followed by an EOS token.
Assign the matched Statement to s

EXAMPLE

Friday, February 1, 13

A JavaCC Rule Pattern

26

Pattern { java code }

Pattern :=

Meaning:
If the Pattern is matched

Then Execute the Java Code

Friday, February 1, 13

A JavaCC Rule Pattern

27

i = <INT> {return parseInt(i.image);}

IntBase :=

Meaning: match an <INT> token and assign it to the variable i
Return the parsed integer as the value for this rule.

EXAMPLE

Note: Remember, i.image is the string matched by the token

Friday, February 1, 13

A JavaCC Rule Pattern

28

Pattern[op]

Pattern :=

Meaning:

Optional/Repeating pattern. Match…
? : at most once

+ : at least once (greedy)
* : any number of times (greedy)

Note: Code literals and variable assignments in the pattern
are executed once for each match

where [op] is ?, + or *

Friday, February 1, 13

A JavaCC Rule Pattern

29

(Statement() <EOS>)+ <EOF>

Program :=

Meaning:
Match one or more Statements as long as each

statement is followed by an EOS Token
After all statements, there should be an EOF

EXAMPLE

Note: Parenthesis may be used to group patterns together

Friday, February 1, 13

A JavaCC Rule Pattern

30

Pattern1 | Pattern2

Pattern :=

Meaning: Match either of the two patterns

Note:
The generated parser looks only at the next N tokens

before committing to this decision (default N=1)
N is known as the lookahead parameter

Friday, February 1, 13

A JavaCC Grammar Rule

31

Program Program() :
 { Program p = new Program();
 Statement s;}
 {
 (s = Statement() <EOS>
 { p.addStatement(s); }
)+ <EOF>
 { return p; }
 }

Match one or more statements.
For each statement matched, assign it to s

then call p.addStatement(s)

If successful, the ‘value’ of this rule is the Program p

Friday, February 1, 13

A JavaCC Grammar Rule

32

Statement Statement() :
 { Statement s; PlanNode q; Table t; }
 {
 q = Select() { return new Statement(q); }
 | t = Table() { return new Statement(t); }
 }

A statement is a SELECT

or a CREATE TABLE
Use a wrapper class to

combine them into one type

Friday, February 1, 13

A JavaCC Grammar Rule

33

int IntBase() :
 { Token t; }
 { t = <DECIMAL> { return Integer.parseInt(t.image); } }

Tokens are of type Token

t.image is the string matched
by the token t

Friday, February 1, 13

34

Any Questions?

Image copyright: Paramount Pictures

Friday, February 1, 13

A JavaCC Tokenizer Rule

35

SKIP : { regex | regex | … }

TOKEN [IGNORE_CASE] : {
 <TOKEN1 : regex >
 | <TOKEN2 : regex >
 | …
}

Don’t generate a token for expressions that match a regex

Define the regex to generate each token type

Friday, February 1, 13

A JavaCC Tokenizer Rule

36

SKIP : { " " }
SKIP : { "\n" | "\r" | "\r\n" }

Ignore whitespace
(unless it’s the 2nd+ character in a token)

Friday, February 1, 13

A JavaCC Tokenizer Rule

37

 < SELECT : "SELECT" >
| < DECIMAL : ("-")?(["0"-"9"])+ >

The string literal ‘SELECT’

an optional leading ‘-’

[Character Class]
Any character who’s ASCII code
is between (inclusive) ‘0’ and ‘9’

?,+,* defined as
in rules

(standard regex)

Friday, February 1, 13

A JavaCC Tokenizer Rule

38

| < STRING : "'" ((~["'"] | ("\\'") | ("\\\\"))*) "'" >
| < ID : (["A"-"Z","_"])(["A"-"Z","0"-"9","_"])* >

~ inverts a class
Any character that is NOT a single quote.

OR defined as before

Any character between A-Z, or
an underscore

Friday, February 1, 13

39

Any Questions?

Image copyright: Paramount Pictures

Friday, February 1, 13

Invoking JavaCC Parsers

40

public static List<List<Datum[]>> execFile(File fname)
 throws SqlException, IOException, ParseException
{
 Sql parser = new Sql(new FileInputStream(fname));
 Program p = parser.Program();
 return Runtime.execFile(p);
}

Instantiate your parser with a java.io.InputStream

Each grammar rule defines a class method
Call the class method for the ‘root’ of your grammar.

Friday, February 1, 13

Testing

41

• SQL examples in sql/test

• Use edu.buffalo.cse.sql.test.* to
test both RA and SQL execution

• Successful tests = guaranteed ≥ 90% grade

• Make sure to create your own test cases!

Friday, February 1, 13

42

Any Questions?

Image copyright: Paramount Pictures

Friday, February 1, 13

