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Portfolio Returns

Suppose you can now invest in an arbitrary number (N) of risky
assets.

I Index the assets by i = 1, . . . , N .

I Let ωi be the fraction of income invested in asset i.

I We will always assume that
∑N

i=1 ωi = 1.

I We will denote the return to asset i by ri.

I The portfolio return is expressed as

rp =

N∑
i=1

ωiri.



Portfolio Moments

From the properties of expectation and variance, we can
compute the mean and variance of the portfolio return.

I Recognize that the N asset returns, ri, are random
variables.

I Denote the means of ri as µi.

I The N ×N covariance matrix of the returns contains the
variances, σ2i , and covariances, Cov (ri, rj) = σij :

ΣP =


σ21 σ12 · · · σ1N
σ21 σ22 · · · σ2N
...

...
. . .

...
σN1 σN2 · · · σ2N





Portfolio Moments

Thus resulting moments of the portfolio are

µp =

N∑
i=1

ωiµi

σ2p =

N∑
i=1

ω2
i σ

2
i + 2

N−1∑
i=1

N∑
j=i+1

ωiωjσij .

What are other ways to express σ2p?



Optimization: Risky Minimum-Variance Frontier

To determine the set of efficient risky portfolios (the risky
frontier), the investor solves

min
{ωi}N−1

i=1

σ2P =

N∑
i=1

ω2
i σ

2
i + 2

N−1∑
i=1

N∑
j=i+1

ωiωjσij (1)

subject to

µp =

N∑
i=1

ωiµi (2)

where µp is some prespecified value of the portfolio mean return.



Optimization: Risky Minimum-Variance Frontier

Note that

I The optimization problem has N − 1 choice variables:
{ωi}N−1i=1 .

I ωN is not a choice variable because it is found from the
constraint: ωN = 1−

∑N−1
i=1 ωi.

I This is a challenging problem that is only tractable with
linear algebra (we won’t solve it).



Risky Minimum-Variance Frontier



Risky Minimum-Variance Frontier

The frontier generated by multiple risky assets is known as the
risky minimum-variance (MV) frontier.

I The lower portion of the frontier is inefficient since a higher
mean portfolio exists with the same volatility on the upper
portion of the frontier.

I The efficient MV frontier is generated by allowing
investment in a risk-free asset and finding the CAL which is
tangent to the risky efficient MV frontier.



Efficient Minimum-Variance Frontier



Optimization: Efficient Minimum-Variance Frontier

To determine the tangency portfolio, the investor solves the
same problem as before

max
µp,σp

SR p =
µp − rf
σp

subject to

µp =

N∑
i=1

ωiµi

σp =

√√√√ N∑
i=1

ω2
i σ

2
i + 2

N−1∑
i=1

N∑
j=i+1

ωiωjσij .



Optimization: Investor Choice

So far we have specified two optimization problems:

1. To determine the risky minimum-variance frontier by
minimizing variance subject to a particular expected
return.

2. To determine the tangency portfolio, by maximizing the
Sharpe Ratio subject to constraints on the mean and
standard deviation.

Neither of these made use of preferences. A final optimization
problem would be the same as before:

3. Maximize utility, U(µp, σp), subject to investing in the
tangency portfolio and a risk-free asset.



Estimation

In practice we must estimate µi, σ2i and σij for i = 1, . . . , N and
j = i+ 1, . . . , N .

I A total of N estimates of means.

I How many variances and covariances must we estimate?

I A total of N elements on the diagonal (variances).

I All of the elements above or below the diagonal (not both
because of symmetry).

I This is a total of

N + (N − 1) + (N − 2) + . . .+ 2 + 1 =

N∑
i=1

i =
N(N + 1)

2
.



Estimation

The total number of estimates is

N +
N(N + 1)

2
=
N(N + 3)

2
.

I As an example, a portfolio of 50 stocks requires
50×53

2 = 1325 estimates.

I The models of subsequent lectures will reduce this
estimation burden.



Portfolio Optimization Recipe

For an arbitrary number, N , of risky assets:

1. Specify (estimate) the return characteristics of all securities
(means, variances and covariances).

2. Establish the optimal risky portfolio.

I Calculate the weights for the tangency portfolio.

I Compute mean and std. deviation of the tangency portfolio.

3. Allocate funds between the optimal risky portfolio and the
risk-free asset.

I Calculate the fraction of the complete portfolio allocated to
the tangency portfolio and to the risk-free asset.

I Calculate the share of the complete portfolio invested in
each asset of the tangency portfolio.



Separation Property

All investors hold some combination of the same two assets: the
risk-free asset and the tangency portfolio.

I The optimal risky (tangency portfolio) is the same for all
investors, regardless of preferences.

I The tangency portfolio is simply determined by estimation
and a mathematical formula.

I Individual preferences determine the exact proportions of
wealth each investor will allocate to the two assets.

I This is known as The Separation Property or Two Fund
Separation.



Separation Property

The separation property implies that portfolio choice can be
separated into two independent steps:

I Determining the optimal risky portfolio (preference
independent).

I Deciding what proportion of wealth to invest in the risk-free
asset and the tangency portfolio (preference dependent).



Separation Property

The separation property will not hold if

I Individuals produce different estimates of asset return
characteristics (since differing estimates will result in
different tangency portfolios).

I Individuals face different constraints (short-sale, tax, etc.).



The Power of Diversification

Let’s formalize the benefits of diversification. The variance of a
portfolio of N risky assets is

σ2p =

N∑
i=1

N∑
j=1

ωiωjσij =

N∑
i=1

ω2
i σ

2
i + 2

N−1∑
i=1

N∑
j=i+1

ωiωjσij .

In the case of an equally weighted portfolio,

σ2p =
1

N2

N∑
i=1

σ2i +
2

N2

N−1∑
i=1

N∑
j=i+1

σij

=
1

N
Var +

N − 1

N
Cov .



The Power of Diversification

Where

Var =
1

N

N∑
i=1

σ2i

and

Cov =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

σij .

These are the average variance and covariance.



The Power of Diversification

The limit of portfolio variance is

lim
N→∞

σ2p = lim
N→∞

1

N
Var + lim

N→∞

N − 1

N
Cov = Cov .

I If the assets in the portfolio are uncorrelated or not
correlated on average (Cov = 0), there is no limit to
diversification: σ2p = 0.

I If there are systemic sources of risk that affect all assets
(Cov > 0) there will be a lower bound on ability to
diversify: σ2p > 0.


