The Term Structure of Interest Rates BKM 10.6

Eric M. Aldrich

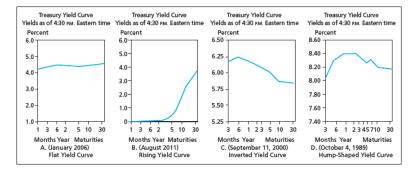
Econ 133

UC Santa Cruz

Yield Curve

Bonds of different maturities often have different yields to maturity.

- ► The relationship between yield and maturity is summarized graphically in the *yield curve*.
- Consider several examples below.



An upward sloping yield curve is evidence that short-term interest rates are going to rise.

- ▶ Consider two investment strategies.
 - ▶ Buy and hold a two-year zero-coupon bond, offering 6% return each year.
 - ▶ Buy a one-year bond today, offering a 5% return over the coming year, and roll the investment into another one-year zero-coupon bond a year from now, offering an interest rate of *r*₂.
- ▶ These investments should be equivalent. Why?

Suppose you begin with \$890 to invest (the price of a two-year zero-coupon bond with 6% YTM.

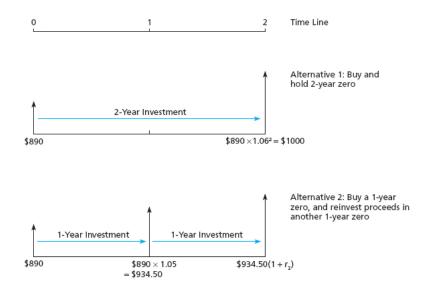
• Equating the returns to each strategy gives:

$$\$890 \times (1.06)^2 = \$890 \times (1.05) \times (1+r_2)$$

$$\Rightarrow 1+r_2 = \frac{1.06^2}{1.05} = 1.0701$$

$$\Rightarrow r_2 = 0.0701.$$

Two Investment Strategies



We distinguish between two types of interest rates.

- ► Spot rate: the rate offered *today* on zero-coupon bonds of different maturities.
 - ▶ In the previous example, the one-year spot rate is 5% and the two year spot rate is 6%.
- ► Short rate: the rate for given time interval (one year) offered at different points in time.
 - ► In the previous example, the first-year short rate is 5% (same as the spot!) and the second-year short rate is 7.01%.

The spot rate for a given period should be the geometric average of short rates over that interval.

- Let y_2 be the two-year spot rate.
- Let r_1 and r_2 be the first-year and second-year short rates.
- Don't forget that $y_1 = r_1$.

$$(1+y_2)^2 = (1+r_1) \times (1+r_2)$$

$$\Rightarrow 1+y_2 = \sqrt{(1+r_1) \times (1+r_2)}.$$

- ► So, if the yield curve slopes up $(y_2 > y_1 = r_1)$, we conclude that short-term rates will rise $(r_2 > r_1)$.
- ▶ Reverse reasoning holds for a downward sloping yield curve.

Spot Rate and Short Rate Example

Assume the following spot rates and short rates:

- Spots: $y_1 = 0.05$, $y_2 = 0.06$ and $y_3 = 0.07$.
- Shorts: $r_1 = y_1$ and $r_2 = 0.0701$.
- What is the three-year short rate, r_3 ?
- Buying a three-year zero-coupon bond should be identical to buying a two-year zero and rolling into a one-year zero.

$$(1+y_3)^3 = (1+y_2)^2 \times (1+r_3)$$

$$\Rightarrow 1.07^3 = 1.06^2 \times (1+r_3)$$

$$\Rightarrow r_3 = \frac{1.07^3}{1.06^2} - 1 = 0.09025.$$

We know

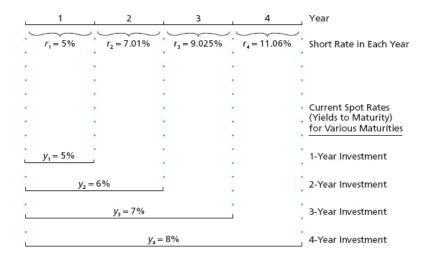
$$(1+y_2)^2 = (1+r_1) \times (1+r_2).$$

So the full decomposition is

$$(1+y_3)^3 = (1+y_2)^2 \times (1+r_3)$$

= (1+r_1) × (1+r_2) × (1+r_3)
 $\Rightarrow 1.07^3 = 1.05 \times 1.0701 \times 1.09025.$

Spot Rate and Short Rate Example



We can generalize the previous results.

• Investing in an n period zero-coupon bond should be the same as investing in an n-1 zero and rolling into a one-period zero at time n-1.

$$(1+y_n)^n = (1+y_{n-1})^{n-1} \times (1+r_n)$$

$$\Rightarrow 1+r_n = \frac{(1+y_n)^n}{(1+y_{n-1})^{n-1}}.$$

Forward Rates

In the development above, we assumed no uncertainty.

- ▶ All future rates were known at time zero.
- ▶ In reality, we don't have perfect knowledge of time *n* short rates at time zero.
- ► To distinguish between actual short rates that occur in the future, we define the forward rate to be

$$\Rightarrow 1 + f_n = \frac{(1+y_n)^n}{(1+y_{n-1})^{n-1}}.$$

- The time t = n forward rate is the break-even interest rate that equates the returns of an n-period zero-coupon bond with an (n 1)-period zero rolled into a one-period zero.
- ▶ It may not be equal to the expected future short rate.

The *Expectations Hypothesis* of the yield curve says that expected short rates equal forward rates:

$$E[r_n] = f_n$$

$$\Rightarrow (1 + y_n)^n = (1 + y_{n-1})^{n-1} (1 + E[r_n]).$$

- ▶ If the yield curve slopes upward, short rates are expected to rise: $E[r_n] > E[r_{n-1}] > r_1 = y_1$.
- ▶ If the yield curve slopes downward, short rates are expected to fall: $E[r_n] < E[r_{n-1}] < r_1 = y_1$.

According to the *Liquidity Preference Theory* of the yield curve, investors must be compensated for holding longer-term bonds.

- ▶ Longer-term bonds are subject to greater risk, and so investors should demand a premium for holding them.
- ▶ In reality, a *premium* means that investors will only buy them for a lower price (which means greater yield).

The Liquidity Preference Theory can be expressed as forward rates being equal to expected short rates plus a premium, ϕ :

$$f_n = \mathbf{E} [r_n] + \phi$$

$$\Rightarrow (1 + y_n)^n = (1 + y_{n-1})^{n-1} (1 + \mathbf{E} [r_n] + \phi).$$

- ► According to this theory, expected short rates *can be* constant if the yield curve is upward sloping.
- ► If the yield curve is downward sloping, expected short rates must be falling. Why?

Liquidity Preference Example

Suppose you buy a two-year bond and that

- ► Short rates for the next two years are constant at 8%: $r_1 = E[r_2] = 0.08.$
- The liquidity premium for year two is 1%: $\phi = 0.01$.

What is the yield to maturity of the two year bond?

$$(1 + y_2)^2 = (1 + r_1)(1 + f_2)$$

= (1 + r_1)(1 + E [r_2] + \phi)
= (1.08)(1.09)
\Rightarrow 1 + y_2 = \sqrt{1.08 \times 1.09}
= 1.085.

▶ So the yield curve slopes up $(y_2 > y_1)$ even though expected short rates are constant.

However, if there is no liquidity premium

$$(1 + y_2)^2 = (1 + r_1)(1 + f_2)$$

= (1 + r_1)(1 + E [r_2])
= (1.08)(1.08)
$$\Rightarrow 1 + y_2 = \sqrt{1.08 \times 1.08}$$

= 1.08.

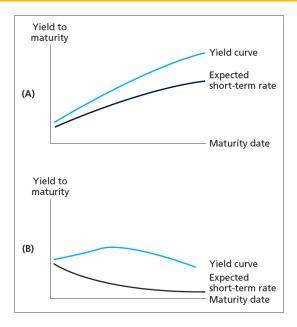
▶ Now the yield curve is flat.

Implications of the Theories

The slope of the yield curve *always* determines whether *forward rates* are rising or falling.

- ► $y_2 > y_1$ means $f_2 > f_1$ (by the definition of forward rates!).
- ► If the Expectations Hypothesis holds, $E[r_2] = f_2$, so $y_2 > y_1$ means $E[r_2] > r_1 = f_1 = y_1$.
- ► If the Liquidity Preference Theory holds, we have no guarantee that $E[r_2] > r_1$ if $y_2 > y_1$.
 - ▶ Short rates could be constant with a moderate liquidity premium.
 - ▶ Short rates could be rising some, with a small liquidity premium.
 - ▶ Short rates could be falling, with a large liquidity premium.
- What about if $y_2 < y_1$?

Expectations Hypothesis vs. Liquidity Preference Theory



Historical Term Spread

