Ilterator

COMP 401, Spring 2013
Lecture 07/
1/31/2013



Design Situation

* Suppose we have an object that encapsulates
some sort of collection.
— SongLibrary
e A collection of songs in an iTunes-like system
— PolygonModel
* A collection of polygons in a 3D modeling system

— Polygon

* A collection of points in our Assignment 2



Design Situation

* Now suppose we have code outside of this
collection object that needs to examine each
element of the underlying collection in turn.

— SongFilter

* A object that represents a set of search criteria that is
to be applied to a collection of songs

— An intersection test in which each polygon of a
PolygonModel needs to be evaluated



Strategy 1: Provide access to
underlying collection as an array.

e SonglLibrary
— public Song|] getSongs()

* PolygonModel
— public Polygon(] getPolygons()

 Drawbacks?
— May have to do a lot of work to create the array
— Collection may be result of generative process



Strategy 2: Provide index access to
each underlying item in collection

* SonglLibrary
— public int getNumSongs();
— public Song getSong(int song_idx);

* PolygonModel

— public int getNumPolygons();

— public Polygon getPolygon(int polygon_idx);
* Drawbacks?

— Doesn’t help with generative collections

— Imposes restrictions on how collection is represented
and linearized

— Deteriorates encapsulation



Strategy 3: Internalize a “cursor”

* SonglLibrary
— public void resetSongCursor();
— public Song getNextSong();

— public boolean isCursorAtEnd();

* Drawbacks?
— Can’t have two traversals going at the same time.
— But, this does come close.



Iterator Design Pattern

* “Provide a way to access the elements of an
aggregate object sequentially without
exposing its underlying representation”

— Gang of Four, Design Patterns

* Consider:
for(int 1=0; i<slist.size(); 1i++) {
Song next song = slist.get(1i);
// Do something with next song.



Iterator Design Pattern

* |terator object encapsulates details of item traversal.
— Understands details of the underlying collection.

— Manages order of items
 May want a traversal that is not just first to last.
* Underlying collection may not be linear.

— Manages state of traversal
* Allows traversal to be picked up again later.

* Assumption: underlying collection is not changed or
modified while the traversal is occurring.

— Interator should be able to detect this and signal an error

— Variant of pattern will have iterator provide methods that
modify underlying collection safely



Elements of Iterator Pattern

* Collection object is “iterable”

— Provides a method that returns an object that acts
as an iterator.

* |terator object provides access to the
elements in turn.

— A method to test whether more items exist.

— A method to retrieve the next item.



Java lterator Pattern Interfaces

e The Java Collections Framework defines two

generic interfaces for supporting the interable
design pattern

— Implemented by the various collection types such
as List<E>, Map<E>, Set<E>, etc.

e |terable<E>
— Interator<E> iterator()

* |terator<E>



lterator<k>

* boolean hasNext()
— Are we at the end of the traversal?

* E next()
— Get the next item of the traversal.
— Throws a runtime exception if no next item.

e void remove()
— Not supported by all implementations.

— Safely removes last item retrieved by next() from
the underlying collection.



Iterable examples

e lec7.vl
— Mainl

e Simple use

— Main2

e Parallel iterators

— Main3

e Simultaneous iterators

— Main4

e for — each syntactic sugar



Main1l Visualized (1)

ArrayList<Song> slist




Main1l Visualized (2)

lterator<Song> iter ArrayList<Song> slist




Mainl Visualized (3)

lterator<Song> iter

public boolean hasNext() {
if (next_idx < list.size()) {
return true;

}

return false;

NOTE: This may or may not be how
it is actually implemented, but it is

effectively what is going on.

ArrayList<Song> slist




Mainl Visualized (4)

lterator<Song> iter ArrayList<Song> slist

public Song next() {
Song s = list.get(next_idx);
next_idx++;
return s;

NOTE: Real implementation would first
check to see if hasNext() is still true and
throw an exception otherwise.



lec7.v1.Main2

 Parallel iteration

— Processes two different lists
e |terator associated with each.
* |terators advance unevenly



lec7.v1.Main3

e Simultaneous iteration

— 2 Iterators, 1 List
* Insert your own joke here.



lec7.v1.Main4

e Java provides “syntactic sugar” for common use

of iterators.

— Supposing e_coll is Iterable<E>, then these are

equivalent:

Iterator<E> iter = e coll.iterator();
while (iter.hasNext()) {

E elem = iter.next();

// Do something with element

for

}

(E elem : e coll) {
// Do something with elem




lec7.v2

* A more complicated iterator

— Can build iterators that do things other than just
go through every item.
* Prior examples made use of Iterator<E> built into

List<E>, here we are going to implement our own
specialized version of Iterator<kE>



