Observer / Observable

COMP 401 Spring 2013
Lecture 19
3/26/2013



Observer / Observable

e Official Gang of Four description:

— Define a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically.

e Observable
— The object of “interest”
* Represents data or state that may change in the future.
e Observer

— The “interested” objects

* Represents parts of system that need to be updated or may
need to take action if/when observable object changes.



Use Cases

e User Interfaces

— User interface elements like buttons, scrollbars, etc.
are “observable”

 State changes correspond to clicks, drags, etc.

— Application objects that must respond to user’s
interactions with the Ul are “observers”

* Asynchronous Programming
— Also known as “event-based” programming

— May have well-defined actions corresponding to
events that may occur, but can’t know in advance
which event will occur or when it will occur.



Basic Observer/Observable

class Observable {
List<Observer> observers;

void addObserver(Observer o) {
// Adds o to list of observers
observers.add(o);

}

void deleteObserver(Observer o) {
// Takes o off list of observers
observers.remove(o);

}

void notifyObservers() {
// Trigger update method on
// all observers
for (Observer o : observers) {
o.update();

}
}
}

interface Observer {
void update();

}

Defining Observer as an interface
allows any class to act as an observer
for the Observable class.

Notice that Observable can have
more than one observer.

— And that they don’t know about each
other or the order of update.



lec19.v1

e Game acts as Observable class
e GameObserver acts as Observer interface
 Dijscussion

— How many games can one fan watch?

— What if we wanted to have fan objects that could
watch more than one game simultaneously?



Observer/Observable Refined

class Observable {
List<Observer> observers;

void register(Observer o) {
// Adds o to list of observers
observers.add(o);

}

void unregister(Observer o) {
// Takes o off list of observers
observers.remove(o);

}

void notifyObservers() {
// Trigger update method on
// all observers
for (Observer o : observers) {

o.update(this);

}

}

}

interface Observer {
void update(Observable o);

}

Passing reference to observable
as a parameter to update method
allows Observer to register with
more than one Observable and
then detect which one changed.



lec19.v2

Same observers watching multiple games

— Game object passed to fan as parameter to
update method.

— So far, fans are reacting to current state of game.
But in real life, what do we react to?



Observer/Observable Refined More

class Observable { interface Observer {
List<Observer> observers; void update(Observable o, Info i);

}

void register(Observer o) {
// Adds o to list of observers
observers.add(o);

}
* |n addition to passing

void unregister(Observer o) {

e oy s reference to Observable

} that changed, we can

P/ Trgges update methodor encapsulate what changed
e O ervere) as additional information

| PRttt for the update method of

, the Observer.




lec19.v3

GameObserver update method now takes
second argument
— String who_scored

e This is the “info” about the change in the game that is
being passed to the fans



Observer/Observable in java.util

* Java provides skeleton Observer / Observable
that you can extend in java.util

— Don’t have to use them.
* Our examples so far haven’t

— The pattern is defined by relationship between
objects and their interaction.
* Not the specific method names and/or implementation.
* Should be able to recognize Observer/Observable by these
characteristics:

— Observer object some how registers with observable.

— Observable invokes a method on observers in order to signal
state changes.



lec19.v4

Game extends java.util.Observable

— No longer have to manage our own list since we inherit
that from Observable

UNCFan and DukeFan implement java.util.Observer

— Parameters to update are no longer context specific.
e update(Observable o, Object arg)

— Need contravariant cast to make them useful

Observable parent class requires state change to be
signaled by call to setChanged() before calling
notifyObservers.

— Otherwise, won’t do anything.



Delegating java.util.Observable

* Using Observable is convenient

— Inherits basic Observable functionality without
having to worry about doing it yourself.

e Must subclass observable.

— Suppose your class already has a parent due to
design or circumstance.

* Don’t have development control over class hierarchy.
e Parent class is part of third party library.

e Solution lies with delegation.



Delegating Observable

e Qutline of solution:

— Create a helper class that does subclass Observable
* Implements same interface as original class via delegation.
* Override notifyObservers to call setChanged() first.

— Create an instance of this helper class as part of your object.

— Provide methods from Observable via delegation to this
instance.

* Delegation is being used both ways here.

— Allows Observer to use “hidden” observable instance as if it
were the original object.

— Allows outside code to interact with original object as if it were
Observable.

e |ecl9.v5



Multiple Observer Lists

* Same delegation trick can be used to support multiple
lists of observers.

— Useful if you want to support more than one type of
observable changes/events.

— Requires providing a way to specify what is being
observed.

* One approach: separate registration methods for each observable
change/event.

* Another approach: additional argument to registration method.

— May need to provide way of distinguishing between events
as part of update info if you want the same observer to be
able to observe more than one observable event.

e |ecl9.v6



