
Notes on Sequential Program Verification

Jayadev Misra 2/26/98

We discuss the method of Inductive Assertions introduced by Floyd and re-
fined by Hoare, and others. We will study the following idealized problem: Given
a program written in a simple imperative language without input/output com-
mands or procedure calls, is it correct? It is possible to introduce input/output,
procedure calls and many other features for the programming language, but we
will restrict ourselves to the following constructs:

• Assignment statement: This is of the form, x := e, where x is a simple
variable and e is an expression. We will introduce arrays later.

• Sequencing: This is of the form, s1; s2, where s1 and s2 are statements.

• Conditional: This is of the form, if b then s1 else s2 fi , where s1
and s2 are statements and b is a predicate.

• Loops: This is of the form, while b do s od , where s is a statement
and b is a predicate.

Program Specification: You are given an input specification (constraints/assertions
on the values of variables before execution of the program) and an output spec-
ification (constraints/assertions on the values of variables after completion of
the program).

Examples

• input specification: x = X, output specification: x = sqrt(X)

• input specification: file f has zero or more records,
output specification: records in f are sorted in increasing order.

• input specification: file f has zero or more records and f = F ,
output specification: records in f are sorted in increasing order and f is
a permutation of F .

We need a formal language to write the input, output specifications. We
will consider that later.

The verification problem is to establish: given that the input assertions are
met before execution of the program then the program terminates, and the
output assertions are met at termination. Thus, we have two separate proofs to
carry out: (1) the proof of correctness assuming that the program terminates,
(2) the proof of termination. Traditionally, the proof of (1) is called a proof of
partial correctness and proof of both (1,2) is called a proof of total correctness.

There are two different views of verification. Analytic or a-posteriori method
calls for a correctness proof given a program and its specification. Synthetic or

1



a-priori view is to design a program along with its correctness proof from its
specification. I will illustrate the analytic method in this note, though most of
our subsequent work will be along the other line.

1 Mechanics of Proof Construction

Given a program and its specification,

1. Invent assertions and attach them to specific program points. Intuitively,
choose assertions such that they hold whenever control reaches the corre-
sponding program point. Attach input/output assertions to the beginning
and end of the program.

There is no general technique and few guidelines for this step.

2. Prove that the assertions indeed hold whenever control reaches the corre-
sponding program point.

There is a technique that converts this problem to proving some logical
propositions over the data types of the program.

3. Prove program termination.

There is a technique that converts this problem to proving some logical
propositions over the data types of the program.

We will study the techniques referred to in (2,3) above at some length; a few
heuristics are given for (1).

Example Consider

while v 6= 0 do
u := u + 1;
v := v − 1

od

Given input assertion, u, v = A,B and output assertion u = A + B, we
will attempt to prove this program as follows. First, we invent the assertion
u + v = A + B and attach it to the loop so that the assertion holds each time
before the test in the loop is evaluated. Then, we will show that this proposition
indeed holds whenever control reaches the point where the test in the loop is
evaluated. Next, we observe that the exit from the loop requires v = 0, which
coupled with u + v = A + B establishes u = A + B. However, this fact holds
only if the loop terminates. As you have probably observed by now, the loop
may not terminate in all cases, for instance, if v < 0 before the program is
started. Therefore, we modify the input specification to u, v = A, B ∧ v ≥ 0,
and reattempt the proof.

2



Annotation We write {p} s {q} to stand for: if p holds before the execution
of s and s terminates (starting in any state that satisfies p) then q holds at
termination.

2 Assignment Statement

Let q[x := e] be the predicate obtained from q by replacing all occurrences of x
by e. You can prove

{p} x := e {q} by showing that
p ⇒ q[x := e]

Examples

1. {y > 10} x := y {x > 5} is proved by showing
y > 10 ⇒ y > 5

2. {y > 10} y := x {x > 5} is proved by showing
y > 10 ⇒ x > 5

Since you can’t prove the above formula, you can’t prove the specification
as given.

3. {x ≥ 0} x := x + 1 {x > 0} is proved by showing
x ≥ 0 ⇒ x + 1 > 0

4. {y = 10} x := y {y > 5} is proved by showing
y = 10 ⇒ y > 5

Observe that the assignment to x has no effect on the value of y; this
means assignments have no side effects.

5. (A small design problem)
What should e be such that the following holds?

{sum = (+j : 0 ≤ j < n : A[j])}
sum := e

{sum = (+j : 0 ≤ j ≤ n : A[j])}

Applying the axiom of assignment, we have to show,

[sum = (+j : 0 ≤ j < n : A[j])] ⇒ [e = (+j : 0 ≤ j ≤ n : A[j])]

i.e., we have to show

[sum = (+j : 0 ≤ j < n : A[j])] ⇒ [e = sum + A[n]]

We can establish this if e is sum + A[n]. So, our assignment is sum :=
sum + A[n].

3



Exercise Given the statement s := false and the post-condition (b ≡ s ∧ t) ∧
(s ∨ t) compute the precondition.

3 Consequence

This rule says that in order to prove {p} s {q} it is sufficient to prove {p′} s {q′}
where p ⇒ p′ and q′ ⇒ q. That is, once you have p ⇒ p′ and q′ ⇒ q you can
strengthen the lhs of {p′} s {q′} (to p) and/or weaken the rhs (to q). This rule
applies for any program s. Thus, given

{x ≥ 0} x := x + 1 {x > 0}
we can conclude, by lhs strengening,
{x > 5} x := x + 1 {x > 0}

and by rhs weakening
{x > 5} x := x + 1 {x ≥ 0}

We have already used this rule in treating the assignment statement. The
assignment axiom tells us

{q[x := e]} x := e {q}
Thus, to prove {p} x := e {q}, first apply the assignment axiom and then the
lhs strengthening rule, i.e.,

p ⇒ q[x := e]

4 Statement Sequences

To prove {p} s1; s2 {q} you have to find a predicate r such that
{p} s1 {r}, and {r} s2 {q}

This rule applies for any two programs, s1 and s2, not just assignments. You
can repeat this rule to prove facts about any sequence of statements, not just
of length 2. Thus, to show

{p} s1; s2; s3 {q}
you have to find r, u such that

{p} s1 {r}, and {r} s2 {u} and {u} s3 {q}
In most cases, you don’t have to guess the intermediate assertions. In par-

ticular, in proving{p} s1; s2 {q} if s2 is an assignment statement then your
task is easy. Let us say s2 is x := e. For q to hold as a post-condition of s2, we
know that q[x := e] has to hold as a pre-condition. So, all we have to show is,

{p} s1 {q[x := e]}
For a sequence of assignment statements, apply this idea over and over to

push the post-condition all the way to the back.

Example The following program exchanges x, y.
{x, y = A,B} t := x; x := y; y := t {x, y = B, A}

Pushing the post-condition before y := t, we get
{x, y = A, B} t := x ; x := y {x, t = B,A}

4



Similarly, pushing the post-condition again
{x, y = A,B} t := x {y, t = B, A}

Finally, pushing it one last time, our proof obligation is
x, y = A,B ⇒ y, x = B, A

Exercise: Prove the following program, where x, y are integers.
{x, y = A, B} x := x + y; y := x− y; x := x− y {x, y = B, A}

Exercise: Prove the following program, where x, y are bit-strings and ⊕ is
the element-wise exclusive-or operation on bit-strings.

{x, y = A,B} x := x⊕ y; y := x⊕ y; x := x⊕ y {x, y = B, A}

5 Conditional

To prove {p} if b then s1 else s2 fi {q}, show the following
{p ∧ b} s1 {q} , and {p ∧ ¬b} s2 {q}

Again, s1 and s2 can be any program.

Example Show that
{true} if x ≥ 0 then y := x else y := −x fi {y ≥ 0 ∧ x2 = y2}

We have to show that
{x ≥ 0} y := x {y ≥ 0 ∧ x2 = y2} and,
{x < 0} y := −x {y ≥ 0 ∧ x2 = y2}

We prove the above two using the rules for assignment:
x ≥ 0 ⇒ x ≥ 0 ∧ x2 = x2

x < 0 ⇒ −x ≥ 0 ∧ x2 = (−x)2

These are, finally, formulae in logic (and arithmetic) that you can prove by using
the properties of numbers.

Be extremely careful about the if-then statement. If you have to prove
{p} if b then s fi {q}

then you have to show
{p ∧ b} s {q}

But that is not enough! You must prove the else branch, too. It is empty but
requires you to show {p ∧ ¬b} do nothing {q}. That is,

p ∧ ¬b ⇒ q
We can do a backward substitution over if b then s1 else s2 fi as

follows. Given that

{u} s1 {q} and
{v} s2 {q}

a pre-condition of if b then s1 else s2 fi given that q is a post-condition is

(b ⇒ u) ∧ (¬b ⇒ v)

Exercise Write and prove correctness of a program that stores the maximum
of a, b and c in m.

5



Exercise For the above problem the following program has been suggested.
Prove its correctness.

if a > b then n := a else n := b fi ;
if n > c then m := n else m := c fi

Exercise Write and prove correctness of a program that determines if three
given positive real numbers specify the lengths of a triangle’s sides.

6 Loops

You will work with specifications of the form {p} while b do s od {q}. To
prove that this specification is met you have to postulate a loop invariant.

1. A loop invariant, I, is a predicate that satisfies
{I ∧ b} s {I}

You have to do three other things:

2. Show that I holds before you start the loop,
p ⇒ I.

3. Show that q holds when you end the loop,
I ∧ ¬b ⇒ q

4. Loop terminates. We take this up later.

Example Consider

{x, y = A,B}
z := 0;
while y 6= 0 do

z := z + x;
y := y − 1

od

For the loop we will have to find an expression whose value is the same at
the beginning of each iteration. What is the unchanging relationship among
x, y and z? Try z + x ∗ y = A ∗B as the invariant, I. Now, we have to show:

1. {z + x ∗ y = A ∗B ∧ y 6= 0} z := z + x; y := y − 1 {z + x ∗ y = A ∗B}

2. {x, y = A,B} z := 0 {z + x ∗ y = A ∗B}

3. z + x ∗ y = A ∗B ∧ y = 0 ⇒ z = A ∗B

4. Loop terminates.

I find it more convenient to postulate the invariant, prove (2,3) and then
prove that I is indeed an invariant (i.e., the formula in 1 holds). After all, the
work involved in proving the formula in (1) is substantially more than in (2) or
(3); the latter ones are simple logical formulae. If you fail in (2) or (3) after
proving (1), you will have wasted a lot of effort.

6



Exercise The following program is alleged to compute the greatest common
divisor (gcd) of variables m,n. Prove its correctness (skip termination).

{m > 0, n > 0, gcd(m,n) = G}
while m 6= n do

if m > n then m := m− n
else n := n−m
endif

od
{m = G}

Hint Try m > 0, n > 0, gcd(m,n) = G as the invariant.

Exercise Design proof rules for the following programming constructs.

repeat
S

until b
end

First S is executed, then b is tested. If b is false then the construct is
repeated, else the repeat loop terminates. This differs from do-while in that S
is executed at least once in the repeat loop.

7 Program Annotation

An annotated program is a program mixed with assertions; assertions are at-
tached to specific points in the program text. An annotation represents your
guesses about a program; if you attach an assertion p to a point in the program
text you are guessing that p holds whenever the control reaches that point. Af-
ter annotating a program you have to prove your guesses. If you are careful,
your guesswork and proof work can be minimized. Follow these rules:

• If you have an assignment statement, x := e with a post-condition q, write
q[x := e] as a pre-condition.

• If you have a conditional, if b then s1 else s2 fi , with a pre-condition
p and a post-condition q, write p∧ b as the pre-condition for s1 and p∧¬b
for s2, and q as the post-condition for both.
Note: It is best to treat if b then s fi , as the statement if b then s
else skip fi , writing an empty else -clause explicitly.

• If you have a loop, guess an invariant, I and annotate as follows.

{I}
while b do
{I ∧ b} s {I}

7



od
{I ∧ ¬b}

After the program is completely annotated you have to show that for two
assertions {p} and {q} that are next to each other (without intervening program
fragments), p ⇒ q.

Example Let me describe in full detail how I annotate a simple program. You
are given the following specification — regard it as a partial annotation — for
a program used to multiply x and y and store the result in z.

{x ∗ y = t}
z := 0;
while y 6= 0 do

if odd(y) then z := z + x fi
y := y ÷ 2;
x := x + x

od
{z = t}

We can’t take the initial assertion and move it forward over the statement
z := 0. So, we really can’t apply any of the rules except guessing an invariant
for the loop. Let me guess –later, I will tell you how I guessed– the invariant:
z + x ∗ y = t. So, I get the annotation

{x ∗ y = t}
z := 0;
{z + x ∗ y = t}
while y 6= 0 do
{z + x ∗ y = t ∧ y 6= 0}
if odd(y) then z := z + x fi ;

y := y ÷ 2;
x := x + x
{z + x ∗ y = t}

od
{z + x ∗ y = t ∧ y = 0}
{z = t}

Now, we can push the invariant through the statement z := 0. Also, we
can make some headway inside the loop: We can push the invariant from the
bottom of the loop through the two assignment statements; also, we can push
it forward through the conditional statement.

{x ∗ y = t}
{0 + x ∗ y = t}
z := 0;
{z + x ∗ y = t}

8



while y 6= 0 do
{z + x ∗ y = t ∧ y 6= 0}
if odd(y) then {z + x ∗ y = t ∧ y 6= 0 ∧ odd(y)}
{z + x + (x + x) ∗ (y ÷ 2) = t}
z := z + x
{z + (x + x) ∗ (y ÷ 2) = t}

else {z + x ∗ y = t ∧ y 6= 0 ∧ ¬odd(y)}
{z + (x + x) ∗ (y ÷ 2) = t}

fi ;
{z + (x + x) ∗ (y ÷ 2) = t}
y := y ÷ 2;
{z + (x + x) ∗ y = t}
x := x + x
{z + x ∗ y = t}

od
{z + x ∗ y = t ∧ y = 0}
{z = t}

The part dealing with program proving is over. Now we have to prove the
following propositions that we get from the adjacent assertions in the program.
We can use algebra, arithmetic and logic in proving these propositions.

x ∗ y = t ⇒ 0 + x ∗ y = t
z + x ∗ y = t ∧ y 6= 0 ∧ odd(y) ⇒ z + x + (x + x) ∗ (y ÷ 2) = t
z + x ∗ y = t ∧ y 6= 0 ∧ ¬odd(y) ⇒ z + (x + x) ∗ (y ÷ 2) = t
z + x ∗ y = t ∧ y = 0 ⇒ z = t

Invariably, the biggest hurdle and the most creative part is in finding the
right invariant. There are no accepted heuristics. The following two could be
useful.

• Replace some constant by a variable in the post-condition to be proven.

• If the post-condition is of the form z = f(A, B,C, D..), where A,B, C,D..
are the initial values of x, y, u, v.. then try as invariant, z⊕f(x, y, u, v, ..) =
f(A,B,C, D..), where ⊕ is the operation you are applying on z (⊕ was +
in the last example).

Example The goal is to compute the number of ones in the binary represen-
tation of a natural number, n. The result is computed in c. Let ones be a
function defined as follows:

ones(0) = 0
ones(2x) = ones(x)
ones(2x + 1) = 1 + ones(x)

The program is as follows.

{N = n}

9



c := 0;
while n 6= 0 do

if odd(n) then c := c + 1 fi ;
n := n÷ 2

od
{c = ones(N)}

As before, we postulate an invariant. Using heuristic (2) try: c + ones(n) =
ones(N). We get the annotation

{N = n}
{0 + ones(n) = ones(N)}
c := 0;
{c + ones(n) = ones(N)}
while n 6= 0 do
{c + ones(n) = ones(N) ∧ n 6= 0}
if odd(n) then
{c + ones(n) = ones(N) ∧ n 6= 0 ∧ odd(n)}
{c + 1 + ones(n÷ 2) = ones(N)}
c := c + 1
{c + ones(n÷ 2) = ones(N)}

else {c + ones(n) = ones(N) ∧ n 6= 0 ∧ ¬odd(n)}
{c + ones(n÷ 2) = ones(N)}

fi ;
{c + ones(n÷ 2) = ones(N)}
n := n÷ 2
{c + ones(n) = ones(N)}

od
{c + ones(n) = ones(N) ∧ n = 0}
{c = ones(N)}

The logical formulae that have to be proven are,

N = n ⇒ 0 + ones(n) = ones(N)
c + ones(n) = ones(N) ∧ n 6= 0 ∧ odd(n) ⇒ c + 1 + ones(n÷ 2) = ones(N)
c + ones(n) = ones(N) ∧ n 6= 0 ∧ ¬odd(n) ⇒ c + ones(n÷ 2) = ones(N)
c + ones(n) = ones(N) ∧ n = 0 ⇒ c = ones(N)

The first one is trivial to prove. For the other three, you need the properties
of ones for your proof.

8 Termination

To show that a program terminates for a given pre-condition, it is sufficient to
show that each loop in it terminates. So, we concentrate on terminations of
loops. Suppose you have already shown that for the program, while b do s

10



od with pre-condition p, predicate I is a loop invariant. To prove termination
postulate an integer-valued variant function, d, defined on program variables,
and show that

• the value of d is non-negative, i.e.
I ⇒ d ≥ 0

(You need to have the right I for this task. You may have to go back and
prove that I∧d ≥ 0 is a loop invariant; then d ≥ 0 follows from I∧d ≥ 0.)

• each iteration of the loop decreases the value of d. You may find it neces-
sary to use the loop invariant for this proof, i.e., you may have to show

{I ∧ b ∧ d = k} s {d < k}

Example Show that the following program terminates under the pre-condition
i ≤ j. Assume i, j are integers.

while i 6= j do
if b then i := i + 1 else j := j − 1 fi

od

First, observe that i ≤ j is a loop invariant and it holds initially. (Exercise:
Prove it.) Let us postulate j− i as the variant function. Then, we have to show

i ≤ j ⇒ j − i ≥ 0 and,

{j − i = k ∧ i 6= j}
if b then i := i + 1 else j := j − 1 fi

{j − i < k}

Exercise: Complete the proof.
Exercise: Are the following functions possible variant functions for this ex-

ample: j − i + 1, j2 − i2, j?

9 Program Design

Here is an example of program design starting from a specification. You are
given an array in which the values are ascending, i.e., we have an array A, con-
sisting of elements A[0]...A[N ], where

(G0): 0 < N ∧ A[0] ≤ ... ≤ A[N ].

We are also given a value v that lies between the array minimum and maximum:

(G1): A[0] ≤ v < A[N ].

Write a program that establishes

11



(G2): 0 ≤ i < N ∧ A[i] ≤ v < A[i + 1].

To start the design, get a loop invariant: Use the heuristic to repace i + 1 by j.

(P): 0 ≤ i < N ∧ A[i] ≤ v < A[j].

This can be established initially by having (see G1)

i := 0; j := N

How do we meet the desired postcondition? Set the loop iteration condition to
i + 1 6= j. So, we have the program skeleton:

{0 < N ∧ A[0] ≤ v < A[N ]}
i := 0; j := N ;

{0 ≤ i < N ∧ A[i] ≤ v < A[j]}
while i + 1 6= j do
{0 ≤ i < N ∧ A[i] ≤ v < A[j] ∧ i + 1 6= j}

S
{0 ≤ i < N ∧ A[i] ≤ v < A[j]}

od
{0 ≤ i < N ∧ A[i] ≤ v < A[i + 1]}

To construct S, introduce h, where i ≤ h < j. S becomes

{0 ≤ i < N ∧ A[i] ≤ v < A[j] ∧ i + 1 6= j ∧ i ≤ h < j}

S:: if A[h] ≤ v then S’ else S” fi

{0 ≤ i < N ∧ A[i] ≤ v < A[j]}

Now, we have two program design tasks. Design S’ and S” such that:

{0 ≤ i < N ∧ A[i] ≤ v < A[j] ∧ i + 1 6= j ∧ i ≤ h < j ∧ A[h] ≤ v}
S’

{0 ≤ i < N ∧ A[i] ≤ v < A[j]}, and

{0 ≤ i < N ∧ A[i] ≤ v < A[j] ∧ i + 1 6= j ∧ i ≤ h < j ∧ A[h] > v}
S”

{0 ≤ i < N ∧ A[i] ≤ v < A[j]}

It is not hard to see that the following designs for S’ and S” are sufficient.

S’:: i := h, and
S”:: j := h

12



10 Linear Search; an example with Arrays

We have an array A, consisting of elements A[0]...A[N − 1], where N > 0. You
are asked to search for a value v in A. Set a boolean variable found to true if
v is in A; set it false, otherwise.

The simplest strategy is linear search. Let i show how far we have already
searched.

{N > 0}
found := false; i := 0;
while ¬found ∧ i < N do

found := (A[i] = v);
i := i + 1

od
{found = (∃j : 0 ≤ j < N : A[j] = v)}

The post-condition says that found is true iff v is in A.
Let us use heuristic (1) to get a loop invariant.

I :: found = (∃j : 0 ≤ j < i : A[j] = v)

Now, a quick check to see that this invariant holds before we start the loop
and that it will give us the required post-condition upon loop termination.

For the initial condition part, pushing I through the first two initialization
statements gives us

false = (∃j : 0 ≤ j < 0 : A[j] = v)

The right side of the above evaluates to false because we have existential
quantification over empty range. Great, so far!

Next, let us check the post-condition. We have to show,
I ∧ ¬(¬found ∧ i < N) ⇒ (∃j : 0 ≤ j < N : A[j] = v)

The antecedent of the implication can be simplified to
(I ∧ found) ∨ (I ∧ i ≥ N)

So, the proof obligation is
(I ∧ found) ⇒ (∃j : 0 ≤ j < N : A[j] = v), and
(I ∧ i ≥ N) ⇒ (∃j : 0 ≤ j < N : A[j] = v)

The first one is easy to see. But the second one is not even true! The trouble
is that we can’t deduce that i = N from the antecedent; all that we can deduce
is i ≥ N . The way out is to embellish the invariant to make it stronger, by
adding the conjunct 0 ≤ i < N ,

J :: (0 ≤ i < N) ∧ found = (∃j : 0 ≤ j < i : A[j] = v)
You should now do the annotation of the program and derive verification

conditions before reading any further.

{N > 0}
{(0 ≤ 0 ≤ N) ∧ [false = (∃j : 0 ≤ j < 0 : A[j] = v)]}

13



found := false;
{(0 ≤ 0 ≤ N) ∧ [found = (∃j : 0 ≤ j < 0 : A[j] = v)]}

i := 0;
{(0 ≤ i ≤ N) ∧ [found = (∃j : 0 ≤ j < 0 : A[j] = v)]}

while ¬found ∧ i < N do
{(0 ≤ i ≤ N) ∧ [found = (∃j : 0 ≤ j < 0 : A[j] = v)] ∧ ¬found ∧ i < N}
{(0 ≤ i + 1 ≤ N) ∧ [(A[i] = v) = (∃j : 0 ≤ j < i + 1 : A[j] = v)]}

found := (A[i] = v);
{(0 ≤ i + 1 ≤ N) ∧ [found = (∃j : 0 ≤ j < i + 1 : A[j] = v)]}

i := i + 1;
{(0 ≤ i ≤ N) ∧ [found = (∃j : 0 ≤ j < i : A[j] = v)]}

od
{(0 ≤ i ≤ N) ∧ [found = (∃j : 0 ≤ j < i : A[j] = v)] ∧ ¬(¬found ∧ i < N)}
{found = (∃j : 0 ≤ j < N : A[j] = v)}

Next, let us prove termination of the loop. In each iteration, the unscanned
portion of the loop is decreasing. This suggests that we try the variant function,
N − i. I will leave you to show that,

J ⇒ (N − i) ≥ 0, and
the value of N − i decreases in each iteration of the loop.

A Simpler Linear Search

In the last algorithm we performed two checks in each iteration: whether the
item v has been found and if the array has been completely scanned. Now, if
we are guaranteed to find the item – i.e., v ∈ A is a pre-condition – then we
need not check if the array has been completely scanned. Of course, there is
not much point in setting found; we know it will be true.

{N > 0, (∃k : 0 ≤ k < N : A[k] = v)}
i := 0;
while A[i] 6= v do

i := i + 1;
od ;
{N > 0, A[i] = v)}

A technique to ensure that v ∈ A is to add v to A. So, we first store v in A[N ]
and then search for it using the method shown above, because we are sure to find
it. If the search yields a value other than N then we set found to true, otherwise
to false. We use the notation v ∈ A[0. < N ] to mean (∃j : 0 ≤ j < N : v = A[j]).
The program is

{N > 0}
A[N ] := v; i := 0;
while A[i] 6= v do

i := i + 1
od ;

14



found := (i < N)
{found = v ∈ A[0. < N ]}

What invariant should we use? As before, let us use 0 ≤ i ≤ N as one
of the conjuncts. Another conjunct is that we have not seen v in the segment
A[0]...A[i− 1]. That is (v /∈ A[0. < i]). So we postulate,

K :: 0 ≤ i ≤ N ∧ (v /∈ A[0. < i])

Let us quickly check that K holds after the initialization and that K can be
used to establish the post-condition. Pushing K backward through the initial-
ization, we get 0 ≤ 0 ≤ N ∧ (v /∈ A[0. < 0]). The first conjunct holds, given
that N > 0. The second conjunct is true (prove it). For the post-condition, we
have K ∧A[i] = v. We are required to show that after completing execution of
found := (i < N) the predicate, found = (v ∈ A[0. < N ]) holds. Pushing this
predicate through the assignment to found, we get (i < N) = (v ∈ A[0. < N ]).
The proof obligation then, is

(K ∧A[i] = v) ⇒ [(i < N) = (v ∈ A[0. < N ]))
This is an interesting proof; you should do it. I get the following annotation

using K as the invariant

{N > 0}
{0 ≤ 0 ≤ N ∧ (v /∈ A[0. < 0])}

A[N ] := v; i := 0;
{0 ≤ i ≤ N ∧ (v /∈ A[0. < i])}

while A[i] 6= v do
{0 ≤ i ≤ N ∧ (v /∈ A[0. < i]) ∧A[i] 6= v}
{0 ≤ i + 1 ≤ N ∧ (v /∈ A[0. < i + 1])}

i := i + 1
{0 ≤ i ≤ N ∧ (v /∈ A[0. < i])}
od ;

{0 ≤ i ≤ N ∧ (v /∈ A[0. < i]) ∧A[i] = v}
{(i < N) = (v ∈ A[0. < N ])}

found := (i < N)
{found = v ∈ A[0. < N ]}

The sad news is that this annotation cannot be proven. We have to show

1. N > 0 ⇒ 0 ≤ 0 ≤ N ∧ (v /∈ A[0. < 0])

2. 0 ≤ i ≤ N ∧(v /∈ A[0. < i])∧A[i] 6= v ⇒ 0 ≤ i+1 ≤ N ∧(v /∈ A[0. < i+1])

3. 0 ≤ i ≤ N ∧ (v /∈ A[0. < i]) ∧A[i] = v ⇒ [(i < N) = (v ∈ A[0. < N ])]

Proposition (2) cannot be proven. Nowhere have we used the fact that
A[N ] = v. But without this fact we can’t even prove termination (and neither
can we prove (2)). Let us strengthen the invariant K to L by adding this
conjunct

15



L :: 0 ≤ i ≤ N ∧ (v /∈ A[0. < i]) ∧A[N ] = v
Do another annotation of the program and prove the required propositions. For
proof of termination, choose the variant function, N − i. Show that,

L ⇒ (N − i) ≥ 0
Next, you have to show that each iteration of the loop decreases (N − i), i.e.

{L ∧A[i] = v ∧ (N − i) = t}
i := i + 1

{(N − i) < t}

Derive the required propositions to prove this.
Exercise: Try a proof of the above program using the invariant,

0 ≤ i ≤ N ∧ (v ∈ A[i. < N + 1]).

10.1 Integer Square Root

Given a natural number k it is required to find its integer square root. Specifi-
cally, we want to compute a natural number s, satisfying s2 ≤ k ∧ (s + 1)2 > k.
In order to get an invariant from this predicate, we replace 1 by a variable, b.
Also, I add the requirement that b is a power of 2.

P :: s2 ≤ k ∧ (s + b)2 > k ∧ (∃i : i ≥ 0 : b = 2i)

The structure of the program is

{k ≥ 0}
initialize;
{P}
while B do
{P ∧B}

S
{P}

od
{P ∧ ¬B} {s2 ≤ k ∧ (s + 1)2 > k}

It is easy to derive B. Looking at the post-condition, we would like b to
become 1. Therefore, B is b 6= 1. Let us look at S now. The purpose of S is to
reduce b (so that b = 1 will hold, eventually) while maintaining the invariant.
How do we reduce b? Since b has to remain a power of 2, a possible program
structure is to first reduce b by halving it and then reestablish the invariant.
That is, S is the program fragment

{P ∧ b 6= 1}
b := b/2; S′

{P}

16



Let us derive the pre-condition for program S′. Recall that
P :: [s2 ≤ k] ∧ [(s + b)2 > k] ∧ (∃i : i ≥ 0 : b = 2i)

The first conjunct of P , s2 ≤ k, still holds because s has not changed.For
the second conjunct of P , halving b transforms (s + b)2 to (s + 2 × b)2; so, we
get (s + 2× b)2 > k. The last conjunct definitely holds. Thus,

{P ∧ b = 1}
b := b/2;

{[s2 ≤ k] ∧ [(s + 2× b)2 > k] ∧ (∃i : i ≥ 0 : b = 2i)}

Check this by using the assignment axiom. So, S′ has to satisfy,

{[s2 ≤ k] ∧ [(s + 2× b)2 > k] ∧ (∃i : i ≥ 0 : b = 2i)}
S′

{[s2 ≤ k] ∧ [(s + b)2 > k] ∧ (∃i : i ≥ 0 : b = 2i)}

Clearly, if (s + b)2 > k holds before S′ we have no work to do (and doing
nothing is always safe). But, if (s + b)2 ≤ k we have to reset s or b (or both) to
achieve the post-condition. This suggests that we write S′ as

S′ :: if (s + b)2 ≤ k then S′′ else skip fi

We have the pre- and post-conditions of S′. So, let us annotate S′ fully.

{[s2 ≤ k] ∧ [(s + 2× b)2 > k] ∧ (∃i : i ≥ 0 : b = 2i)}
if (s + b)2 ≤ k then
{[s2 ≤ k] ∧ [(s + 2× b)2 > k ∧ (s + b)2 ≤ k] ∧ (∃i : i ≥ 0 : b = 2i)}

S′′

{[s2 ≤ k] ∧ (s + b)2 > k ∧ (∃i : i ≥ 0 : b = 2i)}
else

{[s2 ≤ k] ∧ (s + 2× b)2 > k ∧ (∃i : i ≥ 0 : b = 2i)}
fi

{[s2 ≤ k] ∧ [(s + b)2 > k] ∧ (∃i : i ≥ 0 : b = 2i)}

The remaining task is to create S′′ meeting the given specification. It is easy
to see, using the assignment axiom, that s := s + b does the job. Putting the
pieces together, we have so far

initialize;
while b 6= 1 do

b := b/2;
if (s + b)2 ≤ k then s := s + b else skip fi

od

The specification for initialization is,

{k ≥ 0}
initialize

{[s2 ≤ k] ∧ (s + b)2 > k ∧ (∃i : i ≥ 0 : b = 2i)}

17



We can set s to 0 to meet s2 ≤ k. In order to satisfy [(s + b)2 > k] ∧ (∃i :
i ≥ 0 : b = 2i) one possible assignment is to set b to very high value, say to 2k.
But that is too inefficient; we have to go through one iteration just to halve k
and this will eat up k iterations to bring b down to 1. Another strategy is to
start with a small value of b and keep on doubling b until b2 > k. Let us try

{k ≥ 0}
s := 0;
while b2 ≤ k do

b := b + b
od

Exercises:

1. Postulate an invariant for this little program and annotate it.

2. Put all the pieces together in one annotated program.

3. Prove termination of the loops.

11 Exercises

1. Design and prove a program that computes the factorial of a natural num-
ber.

2. The sequence of Fibonacci numbers are defined by
f0 = 0, f1 = 1, fn+2 = fn + fn+1, for all n, n ≥ 0

Design and prove a program that computes the sum of the first N Fi-
bonacci numbers in a variable sum.

3. The following program divides integer variable x by a positive integer y.
It stores the quotient in q and the remainder in r, both integer variables.
Complete the proof.

{y > 0}
q := 0; r := x;
while y ≤ r do

r := r − y; q := q + 1
od

{q × y + r = x, r < y}

4. The following program – for multiplying the integers x, y and storing the
result in z – is a variation of the program given in the notes. It uses a
nested loop. Complete the proof.

{x× y = t, y ≥ 0}
z := 0;

18



while y 6= 0 do
while even(y) do

x := 2× x; y := y ÷ 2;
od ;

z := z + x; y := y − 1
od

{z = t}

5. For a positive integer N , the following program computes an approxima-
tion to the logarithm (base 2) of N in variable log. The variable pow
below is 2log.

{N > 0}
log := 0; pow := 1;
while 2× pow ≤ N do

log := log + 1; pow := pow × 2
od

{2log ≤ N < 2log+1}

For the following problems, A[0..N ] is an array of integers, N ≥ 0. Develop
the programs and proofs together for each of these problems.

6. (a) Find the largest number in A and store it in hi.

(b) Assuming N ≥ 1, find the largest and the smallest numbers, and
store them in hi, lo, respectively.

(c) Solve the problem in (6b) with the following, more sophisticated al-
gorithm. First, compare every adjacent pair of numbers, A[2×i] with
A[2 × i + 1], for all i, i ≥ 0 (assume that the length of A is even),
storing the smaller one in A[2× i] and the larger one in A[2× i + 1].
Then find the smallest number over all even-indexed elements and
store it in lo; find the largest one over all odd-indexed elements and
store it in hi.

(d) Assuming N ≥ 1 find the second largest number in A and store it in
sl.

7. Sort A using the following strategy. Find the smallest number in A and
exchange it with A[0]. Repeat the process with the array A[1..N ].

Next, consider the following variation. Find the smallest and the largest
numbers in A, and exchange them with A[0] and A[N ], respectively. Re-
peat the process with the array A[1..N − 1].

8. Let A[0..N ], N ≥ 0, and B[0..M ], M ≥ 0, be sorted in ascending or-
der. Merge their elements to form C[0..M + N + 1] in ascending order.
(Ascending order for A means (∀i : 0 ≤ i < N : A[i] ≤ A[i + 1].)

19



9. Let A[0..N ], N ≥ 0, and B[0..M ], M ≥ 0, be sorted in ascending order.
Detect if they have a common element.

10. Write a program to transpose a matrix and prove its correctness.

11. Write a program to compute the inner product of two vectors, and prove
its correctness.

12. You are given a matrix of numbers that has M rows. Write a program
that outputs the index of a row that consists of all zeroes. If there is no
such row, output M + 1.

20


