Notes on Iterators and Iterable Page 1

Java - How to use Iterator?

Often, you will want to cycle through the elements in a collection. For example, you might want
to display each element.

The easiest way to do this is to employ an iterator, which is an object that implements either the
Iterator or the Listlterator interface.

“An iterator is an object that allows a programmer to traverse through all the elements of a
collection, regardless of its specific implmentation.”” This allows the user to traverse through a
collection of objects, without them having to know the details of the implementation (i.e. they
don’t know if data are stored in an array, ArrayList, linked list, etc.)

Iterator enables you to cycle through a collection, obtaining or removing elements. Listlterator
extends lterator to allow bidirectional traversal of a list, and the modification of elements.

Before you can access a collection through an iterator, you must obtain one. Each of the
collection classes provides an iterator() method that returns an iterator to the start of the
collection. By using this iterator object, you can access each element in the collection, one
element at a time.

In general, to use an iterator to cycle through the contents of a collection, follow these steps:

Obtain an iterator to the start of the collection by calling the collection's iterator()
method.

Set up a loop that makes a call to hasNext(). Have the loop iterate as long as hasNext()
returns true.

Within the loop, obtain each element by calling next().

For collections that implement List, you can also obtain an iterator by calling Listlterator.

The Methods Declared by lterator:

S
N

1

Methods with Description

boolean hasNext()

Returns true if there are more elements. Otherwise, returns false.

Object next()

Returns the next element. Throws NoSuchElementException if there is not a next element.
void remove()

3 Removes the current element. Throws lllegalStateException if an attempt is made to call
remove() that is not preceded by a call to next().

1 From Wikipedia as attributed on http://blog.dreasgrech.com/2010/03 /javas-iterators-
and-iterables.html

http: //www.tutorialspoint.com/java/java using iterator.htm
http://tutorials.jenkov.com/java-collections/iterable.html

Notes on Iterators and Iterable Page 2
Example: of use on an ArrayList (all ADTs in the Collections class can return an Iterator,
which can be used similarly).

import Jjava.util.x*;

public class IteratorDemo {

public static void main (String argsl[]) {
// Create an array list
ArrayList al = new ArrayList();
// add elements to the array list
al.add("c");
al.add("A");
al.add("E");
al.add("B");
al.add("D");
al.add("F");

// Use iterator to display contents of al
System.out.print ("Original contents of al: ");

Iterator itr = al.iterator();
while (itr.hasNext ()) {
Object element = itr.next();

System.out.print (element + " ");

}
System.out.println();

Listlterator provides additional methods that includes hasPrevious, nextIndex, previous,
set, add, etc.

What's the Iterable interface for?
The Iterable interface (java.lang.Iterable) is one of the root interfaces of the Java collection

classes. The Collection interface extends Iterable, so all subtypes of Collection also
implement the Iterable interface.

A class that implements the Iterable can be used with the enhanced for-loop. Here is such
an example:

List list = new ArrayList();

for (Object o : list) {
//do something o;
}

The Iterable interface has only one method:
public interface Iterable<T> {

public Iterator<T> iterator();
}

http: //www.tutorialspoint.com/java/java using iterator.htm
http://tutorials.jenkov.com/java-collections/iterable.html

Notes on Iterators and Iterable Page

The Iterable interface allows programmers to use the enhanced for-loop with their own
custom classes. This is accomplished by implementing the java.lang.Iterable<E>
interface.

Example: (from http://tutorials.jenkov.com/java-generics/implementing-iterable.html)

public class MyCollection<E> implements Iterable<E>{
public Iterator<E> iterator () {

return new MyIterator<iE>();
}

And here is the corresponding implementation skeleton of the Mylterator class:

public class Mylterator <T> implements Iterator<T> {

public boolean hasNext () {

The 5}9eciﬁc impfemenmm’ons qf hasNext

//implement. ..
} cmcf next cfe’penzfs on ﬁOW tﬁe c[ata n
public T next () { CMyCoﬂéction is stored.
//implement...;
}
public void remove () {
//implement... if supported.

}
}

Here is how to use the MyCollection generified, with the enhanced for-loop:

public static void main (String[] args) {
MyCollection<String> stringCollection = new MyCollection<String>();

for (String string : stringCollection) {

// do something with each “string”

}

The compiler changes the code in the “for” immediately above to:

Iterator<String> itr = stringCollection.iterator();
while (itr.hasNext()) {
String string = itr.next();

// do something with “string”

In the Weiss text, Professor Weiss illustrates the use of Iterator and Iterable in the
implementation of MyArrayList on pages 69 & 70.

http: //www.tutorialspoint.com/java/java using iterator.htm
http://tutorials.jenkov.com/java-collections/iterable.html

3

