Dr. McCauley’s notes on Chapter 5, based on Weiss text Page 1

Chapter 5 - Hashing

Hashing -
* common operations: insertion, deletion, search in constant time

Some things we don’t do with Hash table ADT: traversal, findMin, findMax,
print in sorted order. Not an ordered structure.

Question — what kind of structure can guarantee constant time insertion?
Deletion? Search?

Any of the ADTs we’ve studied so far?

Stack

Queue

Dequeue

Binary search tree

Hash table ADT allows us to access, insert or delete any element in constant
time.

dictionary (logical data structure, an abstract data type) - a collection of data
that supports operations:

* search

* insert,

* delete.
Any kind of data record can be stored in a dictionary. A key is used to identify
data records. Sometimes referred to an associative container - as it associates
(usually) unique keys to possibly unique values.

map (logical data structure, similar to dictionary) - unlike dictionary does not
allow duplicate keys.

Hashing is an efficient way of implementing a dictionary - in fact, such a
common way, people sometimes use the terms synonymously - Weiss

appears to do that.

hashing - a storage implementation for fast access to data.

Page 1 of 11

Dr. McCauley’s notes on Chapter 5, based on Weiss text Page 2

Involves an array that stores records or links to records - called a hash table

A hash function, hash, is applied to a key to get the storage location of the
data; Must map a key into the array - that is, hash(key) must return an index
of the hash table.

* Hash function should be cheap/efficient to apply

* Must distribute keys evenly across the table

Hashing is a technique for storing sparse data -
* huge range of keys - like student numbers, social security numbers
o how many distinct student numbers?
* many fewer actual records expected
o how many actual students?
Start here on day 2 (Spring 2013):
Recall - many keys, sparse data relative to number of keys. Table size
established, usually of prime size. Hash function applied to key to generate
index into table.
Key must be of a type for which equality can be checked.
Hash function:
* must be efficient to compute
* should provide a good (even) distribution of keys across the table
hash(key) must return same array index for many data records

Lots of research on what makes good hash functions....

Size of table is often set to be prime - seems to help in the even distribution of
keys

See sample hash functions in Figures 5.2, 5.3, 5.4. Assume that the hash table
size, tableSize = 10,007.

* Figure 5.2 - for the key “hello” what does hash(key) return?

Page 2 of 11

Dr. McCauley’s notes on Chapter 5, based on Weiss text Page 3

The function sums the ascii values of the characters in “hello”. That is, it
computes 104 + 101 + 108 + 108 + 111 = 532 % tableSize = 532 % 10,007 =
532.

A key would have to have at least 78 digits to get a value bigger than 10007,
and if we expect keys to be significantly smaller than that, we won'’t get a good
distribution across the table. For example, if keys are limited to 8 characters
are fewer, then the hash values generated will range only up to 1016, leaving
most of the table unused.

* Figure 5.3 - for the key “hello” would compute: 104 + 27*101 + 729*108
=81,563 % tableSize = 1507

While the number of different lower-case three-letter combinations is 263 =
2851, according to Weiss, the dictionary only shows that 2831 of them are
used, so, at most, only 28% of the table will be used - again, not an even
distribution of keys across the table.

* Figure 5.4 - for the key “hello” computes 104 *374+ 102*373 + 108*372 +
108*37 + 111 = 77?7 % tableSize = 7?7?

This function uses all characters and will use all of the table, assuming that
keys are of reasonable length. The function is efficient to carry-out, but could
take too long IF the keys are very long.

Also, if keys are long, an overflow could occur - that is the number generated
could get too big to fit into 32 bits and generate a negative value by
overflowing into the sign bit. Thus, a check for a negative value is made and
handled.

keys - or data records including keys, must provide an equals method so that
the key value can be searched for

hashcode - in Java, a hashcode method (a hash function that returns an int for
a key) is expected.

collision - occurs when more than one key hashes to the same hash address.

Page 3 0f 11

Dr. McCauley’s notes on Chapter 5, based on Weiss text Page 4

Can be expected even when the amount of data is less than the size of the hash
table.

Collision resolution technique - process to follow to determine where to store
data that hashes to an already used has address.

Assuming a good hash function, the probability of a collision grows as the
table’s load factor grows. Load factor = number of keys in table / tableSize

A load factor of 1.0 signifies a full table.
A table of size 10007, that contains 2600 keys has a load factor of 2600/10007
of .26

Two basic techniques for the physical data structure of a hash table, and the
collision resolution technique(s) applicable are:

1. separate chaining - the hash table stores keys in linked lists; the data
and keys for keys that hash to index x, are stored in a linked list that is
accessible from table[x]. In effect, a hash table is an array of list
references.

2. Open addressing - there are no lists

Implementation 1: Separate chaining - see picture in Figure 5.5, page 175.
For simplicity, a table size of 10 and hash function of key % 10 are used.

Separate chaining - keys that hash to same index are stored in a simple linked
list — just add new Kkey to the front of the list.

For this example, All keys that end in 1 hash into index 1, etc. If the keys are
not random, that is if all end in the digit 1, then all will be hashed into the
same address! (in which case, we’d choose a different hash function, but this is
just an example).

If the chains get too long, then the tableSize has not been chosen well.

If there are too many collisions, with some buckets empty, then the hash
function has not been chosen well.

Page 4 of 11

Dr. McCauley’s notes on Chapter 5, based on Weiss text Page 5

See author’s implementation for a chaining hash table, pages 175-178,
Note that typical key classes, like String, and Integer, both already implement:
hashCode and equals.

For any object-type that we want to store in a hash table, we need to
* Decide what the key is
* Provide an equals method for that object, that is based on the key
value/field
* Provide a hashCode method for that object, that is based on the key
value/field

Advantage of chained hash tables? Collision resolution simple
Disadvantage of changed hash tables? Use of second data structure, allocating
new nodes adds to costs

Implementation 2: Open addressing - all data stored in the hash table; no
chains (linked lists) stored. Recommendation: load fact (A) <.5

Collision resolution - if a cell is already occupied, follow a pre-determined
strategy for finding a new location.

Typically, the strategy is considered to be the application of a function such as
f(), which computes the next address as a distance from the original index.
So, the following locations are tried ho(key), hi(key), etc. until an available
location is found.

hi(key) = hash(key) + f(i) % tableSize, where f(0) =0
Strategies:
* Linear probing - just put the data item in the next available cell, wrapping

around if the end of the table is reached. (i) = i.
o See the example on page 180.

Page 5 of 11

Dr. McCauley’s notes on Chapter 5, based on Weiss text

Page

Linear probing has the bad characteristic in leading to primary clustering.
Lots of keys tend to hash to nearby locations.

* (Quadratic probing - avoids primary clustering by using a slightly more
complex strategy: f(i) = i%. So the hash indices are:

hash(key), hash(key) + 1, hash(key)+4, hash(key) + 9, etc....

See example in Figure 5.13.

As with linear probing, the load factor should be .5 or less, for best results.
But, it is possible that some indices will never be hashed to. To avoid this,
make sure table size is a prime of the form 4k + 3. Primes of this form include:

Primes of form 4i+3, for values i: 0..1000
i
:52; 211
: 55; 223
:56; 227
: 59; 239
1 62; 251
:65; 263
:67; 271
:70; 283
:76; 307
:77; 311
:82; 331
: 86; 347
: 89; 359
:91; 367
: 94, 379
: 95; 383
: 104; 419
:107; 431
: 109; 439
:110; 443
: 115; 463
:116; 467

:0; 3
:1;7

:2; 11
:4; 19
:5;23
:7; 31
:10; 43
:11; 47
: 14; 59
:16; 67
:17; 71
:19; 79
:20; 83
:25; 103
:26; 107
:31; 127
:32; 131
:34; 139
:37; 151
:40; 163
:41; 167
:44:; 179
:47:;191

Pk s s i s s pmds s s pdn s s i i s pds i et s pds s s s pdn

Page 6 of 11

Pk s pdn et s s pds s s pdn s s i i et pdn pds i s pds s s s

49; 199

Pk s s i s s pmds s s pdn s s i i s pds i et s pds s s s pdn

:119; 479
:121; 487
:122; 491
: 124; 499
: 125; 503
: 130; 523
: 136; 547
: 140; 563
:142; 571
: 146; 587
: 149; 599
: 151; 607
: 154; 619
: 157; 631
: 160; 643
:161; 647
: 164; 659
:170; 683
:172; 691
:179; 719
:181; 727
: 184; 739
: 185; 743

Pk s s i s s pmds s s pdn s s i i s pds i et s pds s s s pdn

:187; 751
: 196; 787
:202; 811
: 205; 823
: 206; 827
: 209; 839
: 214; 859
: 215; 863
: 220; 883
:221; 887
:226; 907
:227; 911
:229; 919
: 236; 947
: 241; 967
:242; 971
: 245; 983
: 247; 991
: 254; 1019
: 257; 1031
: 259; 1039
:262; 1051
: 265; 1063

6

Dr. McCauley’s notes on Chapter 5, based on Weiss text

Pk s pdn et s pdn pds s s pdn s s i et s pmds i et pdn pds s s pds s s i et s pds i s peds i s s pdn s s i s

:271; 1087
:272; 1091
:275; 1103
: 280; 1123
: 287; 1151
:290; 1163
:292; 1171
: 296; 1187
: 305; 1223
:307; 1231
: 314; 1259
:319; 1279
: 320; 1283
:322; 1291
: 325; 1303
: 326; 1307
:329; 1319
: 331; 1327
: 341; 1367
: 349; 1399
: 355; 1423
: 356; 1427
: 359; 1439
: 361; 1447
: 362; 1451
: 364; 1459
:367; 1471
: 370; 1483
: 371; 1487
: 374; 1499
:377; 1511
: 380; 1523
: 382; 1531
: 385; 1543
: 389; 1559
: 391; 1567
:392; 1571
: 394; 1579
: 395; 1583

Page 7 of 11

Pk s pdn et s pdn pds s s pdn s s i et s pmds i et pdn pds s s pds s s i et s pds i s peds i s s pdn s s i s

:401; 1607
: 404; 1619
: 406; 1627
: 415; 1663
:416; 1667
:424; 1699
:430; 1723
: 436; 1747
: 439; 1759
: 445; 1783
: 446; 1787
:452; 1811
: 455; 1823
:457; 1831
: 461; 1847
: 466; 1867
:467; 1871
: 469; 1879
: 476; 1907
: 482; 1931
: 487; 1951
: 494; 1979
: 496; 1987
: 499; 1999
: 500; 2003
:502; 2011
: 506; 2027
: 509; 2039
: 515; 2063
: 520; 2083
: 521; 2087
: 524; 2099
:527; 2111
: 532; 2131
: 535; 2143
: 544; 2179
: 550; 2203
: 551; 2207
: 559; 2239

Pk s pdn et s pdn pds s s pdn s s i et s pmds i et pdn pds s s pds s s i et s pds i s peds i s s pdn s s i s

: 560; 2243
:562; 2251
: 566; 2267
:571; 2287
:577; 2311
: 584; 2339
: 586; 2347
: 587; 2351
: 592; 2371
: 595; 2383
: 599; 2399
:602; 2411
: 605; 2423
:611; 2447
: 614; 2459
:616; 2467
:625; 2503
: 632; 2531
: 634; 2539
: 635; 2543
:637; 2551
: 644; 2579
: 647; 2591
:661; 2647
: 664; 2659
: 665; 2663
1 667; 2671
: 670; 2683
:671; 2687
:674; 2699
:676; 2707
:677; 2711
:679; 2719
:682; 2731
: 691; 2767
:697; 2791
: 700; 2803
: 704; 2819
: 710; 2843

Pk s pdn et s pdn pds s s pdn s s i et s pmds i et pdn pds s s pds s s i et s pds i s peds i s s pdn s s i s

Page

: 712; 2851
: 719; 2879
: 721; 2887
: 725; 2903
: 731; 2927
: 734; 2939
: 740; 2963
: 742; 2971
: 749; 2999
: 752; 3011
: 754; 3019
: 755; 3023
: 766; 3067
: 769; 3079
: 770; 3083
: 779; 3119
: 790; 3163
: 791; 3167
: 796; 3187
: 797; 3191
: 800; 3203
: 812; 3251
: 814; 3259
: 817; 3271
: 824; 3299
: 826; 3307
: 829; 3319
: 830; 3323
: 832; 3331
: 835; 3343
: 836; 3347
: 839; 3359
: 842; 3371
: 847; 3391
: 851; 3407
: 865; 3463
: 866; 3467
: 872; 3491
: 874; 3499

Dr. McCauley’s notes on Chapter 5, based on Weiss text

Pk s pdn et et pdn pds s

Primes of form 4i + 3 for i: 9000...9999
i: 9001; 36007 '
:9002; 36011
:9016; 36067
:9020; 36083
:9026; 36107
:9032; 36131
:9037; 36151
: 9046; 36187
:9047; 36191
:9062; 36251
: 9065; 36263
:9074; 36299
:9076; 36307
:9079; 36319
: 9085; 36343
: 9095; 36383
:9112; 36451
:9116; 36467
:9119; 36479
:9130; 36523
:9131; 36527
:9137; 36551
:9139; 36559
:9140; 36563
:9142; 36571
: 9145; 36583
: 9146; 36587
: 9149; 36599
:9151; 36607

Pk s pdn et s pdn pds s s pdn s s i i s pds i et pds pds s s pdn pds s i et pd s s

: 877; 3511
: 881; 3527
: 884; 3539
: 886; 3547
: 889; 3559
: 892; 3571
: 895; 3583
:901; 3607

Page 8 of 11

Pk s pdn et et pdn pds s

Pk s pdn et s pdn pds s s pdn s s i i s pds i et pds pds s s pdn pds s i et pd s s

:905; 3623
:907; 3631
: 910; 3643
: 914; 3659
:917; 3671
:922; 3691
:929; 3719
:931; 3727

:9160; 36643
:9167; 36671
:9170; 36683
:9172; 36691
: 9184; 36739
:9191; 36767
: 9194; 36779
: 9196; 36787
:9197; 36791
:9211; 36847
:9217; 36871
:9221; 36887
: 9224; 36899
:9229; 36919
:9230; 36923
:9232; 36931
: 9235; 36943
: 9236; 36947
: 9244; 36979
: 9250; 37003
: 9254; 37019
: 9259; 37039
:9271; 37087
:9280; 37123
: 9284; 37139
:9289; 37159
:9292; 37171
:9299; 37199
: 9305; 37223

Pk s pdn et et pdn pds s

Pds pdn et s pdn pds s s pds s s i i s pmds i i s pds s s s s s pds i et s s

: 934; 3739
: 941; 3767
: 944; 3779
: 950; 3803
: 955; 3823
: 961; 3847
: 962; 3851
: 965; 3863

:9310; 37243
: 9326; 37307
: 9334; 37339
: 9340; 37363
: 9344; 37379
: 9355; 37423
:9361; 37447
: 9365; 37463
:9370; 37483
: 9376; 37507
:9377; 37511
: 9386; 37547
: 9391; 37567
:9392; 37571
: 9394; 37579
: 9397; 37591
:9401; 37607
: 9404; 37619
:9410; 37643
: 9415; 37663
:9422; 37691
: 9424; 37699
: 9436; 37747
: 9445; 37783
: 9449; 37799
:9452; 37811
: 9457; 37831
: 9461; 37847
:9467; 37871

Pk s pdn et et pdn pds s

Pds pdn et s pdn pds s s pds s s i i s pmds i i s pds s s s s s pds i et s s

Page 8

: 976; 3907
:977; 3911
: 979; 3919
: 980; 3923
:982; 3931
: 985; 3943
: 986; 3947
:991; 3967

: 9469; 37879
: 9476; 37907
:9487; 37951
: 9490; 37963
: 9491; 37967
: 9496; 37987
: 9497; 37991
:9502; 38011
: 9509; 38039
:9511; 38047
: 9520; 38083
:9529; 38119
: 9541; 38167
: 9545; 38183
: 9554; 38219
: 9557; 38231
: 9559; 38239
: 9571; 38287
: 9574; 38299
: 9575; 38303
: 9581; 38327
: 9587; 38351
: 9592; 38371
:9607; 38431
:9611; 38447
: 9614; 38459
: 9635; 38543
: 9641; 38567
: 9650; 38603

Dr. McCauley’s notes on Chapter 5, based on Weiss text

Pk s s et ks pdn pds i s pds s s s s s s i et s s

:9652; 38611
: 9659; 38639
:9662; 38651
:9667; 38671
:9674; 38699
:9676; 38707
:9677; 38711
: 9680; 38723
: 9686; 38747
:9691; 38767
: 9695; 38783
:9697; 38791
:9700; 38803
: 9709; 38839
:9712; 38851
: 9716; 38867
:9722; 38891
: 9725; 38903
: 9730; 38923

Pk s s et ks pdn pds i s pds s s s s s s i et s s

: 9739; 38959
:9742; 38971
: 9754; 39019
: 9755; 39023
:9760; 39043
:9761; 39047
:9769; 39079
:9775; 39103
:9776; 39107
:9779; 39119
: 9784; 39139
:9790; 39163
:9797; 39191
: 9799; 39199
: 9806; 39227
: 9809; 39239
:9812; 39251
: 9830; 39323
: 9835; 39343

Pk s s et ks pdn pds i s pds s s s s s s i et s s

: 9839; 39359
: 9841; 39367
:9842; 39371
: 9845; 39383
: 9854; 39419
: 9859; 39439
: 9860; 39443
: 9862; 39451
: 9874; 39499
: 9875; 39503
:9877; 39511
: 9887; 39551
: 9890; 39563
:9901; 39607
: 9904; 39619
: 9905; 39623
:9907; 39631
: 9914; 39659
:9916; 39667

Pk s s et s s pds i s pds pds s s pds s s et s

Page 9

:9917; 39671
:9919; 39679
: 9925; 39703
:9929; 39719
:9931; 39727
: 9944; 39779
:9947; 39791
: 9949; 39799
: 9956; 39827
: 9959; 39839
:9961; 39847
: 9965; 39863
:9970; 39883
:9971; 39887
:9992; 39971
: 9994; 39979
: 9995; 39983

There are infinitely many primes of this form - so not hard to find one of the
right size for your data.

* Double hashing - uses a second hash function and we probe the
following: f(i) = i*hash2(key) or if hash1(key) is in use, then try
hash2(key), 2*hash2(key), 3*hash2(key), ... etc.

Must make sure that hash2(key) never generates 0.
Must make sure that all indices can be probed: Weiss suggests a function of
the form hash2(key) = R - (key % R) with R a prime smaller than table size.
For his example, Weiss chooses R = 7 and shows results in Figure 5.18.

Other techniques:

Rehashing - applied when the table gets too full (load factor > some

threshold value).

Page 9 of 11

Dr. McCauley’s notes on Chapter 5, based on Weiss text Page 10

Solution - double the tablesize (and pick the next prime for size) and
then rehash (hash function modified for new table size) all values into
the new table.
o Rehashing is costly as it involves walking through entire table and
rehashing all.
o Rehashing can also be used with separate chaining, when hash
table chains are getting too long, or table too full.

HashMap - is a Java collections framework implementation of a Map ADT.
Makes a good choice for a solution that requires a hash table.

Hash tables with worst-case O(1) access

Perfect hashing - a perfect hash function is one that maps n iems to n unique
indices; no collisions occur. So, how do you come up with a perfect hash
function?

If you know, in advance, all N keys, you could set up a chained hash table
with N lists, of course that might result in a very big table and we might
still get collsions.

Research has shown that if the table size M is ©(N2) we can devise a
plan that guarantees that the probability of collisions is at least %2 (more
than half the time there is no collision). However, this makes for a very
big table.

One option is to store exactly N bins - of course, there may still be
collisions, but since all keys are known, we can determine how many
keys hash to each bin, and resolve collisions by storing an additional
table for that bin, where the secondary table is of size k? if k elements
map to that bin. A hash function for the bin is determined such that the
k elements are hashed in a way that no collision occurs. Each bin may
have its own hash function. It turns out that the space needed to make
this plan work is linear!

Page 10 of 11

Dr. McCauley’s notes on Chapter 5, based on Weiss text Page 11

Cuckoo hashing - for N items, we maintain 2 tables, each more than half
empty, and we have two independent hash functions that can assign each item
to a position in each table. An item is always stored in one of these two places.

From Wikipedia: The name derives from the behavior of some species of
cuckoo, where the cuckoo chick pushes the other eggs or young out of the nest
when it hatches; analogously, inserting a new key into a cuckoo hashing table
may push an older key to a different location in the table.

When a key hashes to a location already used; the key already there is moved to
its correct position in table 2, and the new key gets its spot. A key always hashes
to the spot in table 1, determined by the hash function for table 1. It is only moved
into table 2, if another key pushes it out of its position.

It is possible that a cycle could occur and an element might be able to be placed
in the table — example in book.

If each hash table has s load factor less than .5, cuckoo hashing works pretty
well. When the table’s load factor is .5 or higher, the probability of cycles
increases.

Universal hashing —

Goals of good hash function:

1. Efficiently computable (in constant time)
2. Distributes its items uniformly across the table

Universal hash functions - allow us to choose the hash function randomly in a
way that condition 2 is satisfied.

Let M represent the tablesize.

A family H of hash functions is universal, if for any x = y, the number of hash
functions h in H for with h(x) = h(y) is at most |H|/M.

One such H, where a & b are chosen randomly and p is a prime number bigger
than the tablesize M:

H = {Hap (x) = ((ax + b) mod p) mod M), where 1 < a <p-1, O<b=<p-1}.

Page 11 of 11

