
Android
Hard & Soft Keyboards

Victor Matos
Cleveland State University

Notes are based on:
The Busy Coder's Guide to Android Development
by Mark L. Murphy
Copyright © 2008-2009 CommonsWare, LLC.
ISBN: 978-0-9816780-0-9
&
Android Developers
http://developer.android.com/index.html

7B

2

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

2

Android r1.5 introduced the notion of Input Method Framework
(IMF).

The idea is to let the IFM arbitrate the interaction between
applications and the current input method chosen by the user.

The motivation behind this framework is the realization that as
Android matures, more hardware /software devices, and input
techniques will appear in user’s applications, for instance:

• real & virtual keyboards,
• voice recognition,
• hand writing,
• etc…

3

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

3

Keyboarding data into Android’s applications is functionally
dependent of the hardware present in the actual device.

HTC – G1
Sliding Window exposes
(occasionally) a hard
keyboard

Samsung
Model shows a
permanent hard
keyboard

HTC - Magic
Model shown has no
hard keyboard

4

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

4

The IMF is aware of the
available hardware and its
current state.

If there is no a readily
available hardware keyboard,
an input method editor (IME)
will be made available to the
user when they tap on an
enabled EditText.

Soft Keyboard

Enabled
EditText

5

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

5

Telling Android what data to expect

TextViews can indicate by XML attribute or Java method the
expected type of a text field:

android:inputType=“...”

editTextBox.setRawInputType(int)

This way Android knows the type of data to be placed in a text field.

Knowing the type is useful in deciding what appropriated input
method could be applied to help the user enter text.

XML

Java

6

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

6

Constant Value Description

none 0x00000000 There is no content type. The text is not editable.

text 0x00000001 Just plain old text.

textCapCharacters 0x00001001 Can be combined with text and its variations to request

capitalization of all characters.

textCapWords 0x00002001 Can be combined with text and its variations to request

capitalization of the first character of every word.

textCapSentences 0x00004001 Can be combined with text and its variations to request

capitalization of the first character of every sentence.

textAutoCorrect 0x00008001 Can be combined with text and its variations to request auto-

correction of text being input.

Android:inputType Values

7

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

7

Constant Value Description

textAutoComplete 0x00010001 Can be combined with text and its variations to specify that

this field will be doing its own auto-completion and talking

with the input method appropriately.

textMultiLine 0x00020001 Can be combined with text and its variations to allow multiple

lines of text in the field. If this flag is not set, the text field will

be constrained to a single line.

textImeMultiLine 0x00040001 Can be combined with text and its variations to indicate that

though the regular text view should not be multiple lines, the

IME should provide multiple lines if it can.

Android:inputType Values

8

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

8

Constant Value Description

textUri 0x00000011 Text that will be used as a URI.

textEmailAddress 0x00000021 Text that will be used as an e-mail address.

textEmailSubject 0x00000031 Text that is being supplied as the subject of an e-mail.

textShortMessage 0x00000041 Text that is the content of a short message.

textLongMessage 0x00000051 Text that is the content of a long message.

textPersonName 0x00000061 Text that is the name of a person.

textPostalAddress 0x00000071 Text that is being supplied as a postal mailing address.

textPassword 0x00000081 Text that is a password.

textVisiblePassword 0x00000091 Text that is a password that should be visible.

textWebEditText 0x000000a1 Text that is being supplied as text in a web form.

Android:inputType Values

9

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

9

Constant Value Description

textFilter 0x000000b1 Text that is filtering some other data.

textPhonetic 0x000000c1 Text that is for phonetic pronunciation, such as a phonetic

name field in a contact entry.

number 0x00000002 A numeric only field.

numberSigned 0x00001002 Can be combined with number and its other options to allow

a signed number.

numberDecimal 0x00002002 Can be combined with number and its other options to allow

a decimal (fractional) number.

phone 0x00000003 For entering a phone number.

datetime 0x00000004 For entering a date and time.

date 0x00000014 For entering a date.

time 0x00000024 For entering a time.

Android:inputType Values

10

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

10

Example1: Using android:text="inputType: text|textCapWords"
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

android:id="@+id/widget31"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:background="#ffcccccc"

android:orientation="vertical"

xmlns:android="http://schemas.android.com/apk/res/android" >

<TextView

android:id="@+id/caption"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:background="#ff0000ff"

android:text="inputType: text|textCapWords"

android:textStyle="bold"

android:textSize="22sp" />

<EditText

android:id="@+id/editTextBox"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:padding="10px"

android:textSize="18sp"

android:inputType="text|textCapWords" />

</LinearLayout>

Multiple types of input
methods could be
combined. Use “pipe”
symbol | to separate
the options.

In the example a soft
text keyboard is used,
in addition it should
proper capitalize each
word

11

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

11

Example1: Using android:text="inputType: text|textCapWords"

After tapping the EditBox a
soft keyboard appears
showing CAPITAL letters

After first letter is typed the
Keyboard switches
automatically to LOWER case
to complete the word.

After entering space the
keyboard repeats cycle
beginning with UPPER case,
then LOWER case letters.

12

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

12

Example2: Using
android:inputType="number|numberSigned|numberDecimal"

1. The keyboard displays numbers.
2. In general other non-numeric keys are visible but

disable.
3. Only valid numeric expressions can be entered.
4. Type number|numberSigned accepts integers.
5. Type numberDecimal accepts real numbers.

Assume the EditText field is named: editTextBox,
In Java code we could at run-time set the input
method by issuing the command:
editTextBox.setRawInputType(

android.text.InputType.TYPE_CLASS_PHONE) ;

13

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

13

Example2: Using
android:inputType="textPassword"

• The keyboard displays all possible keys.
• Current character is briefly displayed for verification purposes.
• The current character is hidden and a heavy-dot is displayed.

Example3: Using
android:inputType="textEmailAddress"

Soft keyboard
favors characters
commonly used in
email addresses
such as letters, @

14

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

14

Example4: Using android:inputType= "phone"

Soft keyboard displays
the layout of a typical
phone keypad plus
additional non digit
symbols such as:
() . / Pause Wait # - +

15

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

15

Example5: Using android:inputType="time"

Soft keyboard displays a numerical layout.

Only digits and colon-char : can be used.

When clicking on alphabetic choice ABC
only character to make am and pm are
allowed.

16

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

16

Example6: Using android:inputType="date"

Soft keyboard displays a numerical layout.

Only digits and date valid characters are
allowed.

Examples of valid dates are:
12/31/2011
12-31-2011
12.31.2011

17

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

17

Disable Soft Keyboarding on an EditText View

Assume txtBox1 is an EditText box. To disable the action of the soft
keyboard on an EditText you should set its input type to null, as indicated
below:

txtBox.setInputType(InputType.TYPE_NULL);

You may also try (deaf touch listener)

txtBox.setOnTouchListener(new OnTouchListener() {

@Override

public boolean onTouch(View arg0, MotionEvent arg1) {

// return true to consume the touch event without

// allowing virtual keyboard to be called

return true;

}

});

18

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

18

Close SoftKeyboard Window / Hide SoftKeyboard

Once it has opened, you may close the virtual keyboard by tapping the hardware
BackArrow key or issuing the following commands:

InputMethodManager imm =
(InputMethodManager) getSystemService(Context.INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow (theEditTextField.getWindowToken(), 0);

19

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

19

Do not Allow Soft-Keyboard to be Shown

When you click on an EditText the soft-keyboard is normally displayed. To avoid
this from happening do the following:

//do not allow soft-keyboard to show

txtMsg.setOnTouchListener(new OnTouchListener() {

@Override

public boolean onTouch(View v, MotionEvent event) {

//do something-nothing here

return true; // true: we have consumed the event

// false: it will be passed along

}

});

20

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

20

TextWatcher Control

Assume txtBox1 is an Editable box. A listener of the type onKeyListener could
be used to follow the actions made by the hardware keyboard; however it will
not properly work with the Virtual Keyboard.

A solution to this problem is to attach to the Editable control a TextWatcher
and let its methods be called when the Editable text is changed.

The main methods of a TextWatcher are:

public void afterTextChanged (Editable theWatchedText)
public void beforeTextChanged (…)
public void onTextChanged (…)

21

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

21

Example 7: TextWatcher Demo

EditText uses
.addTextChangedListener

IMF suggestions

22

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

22

Example 7: TextWatcher Demo
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#ffaabbcc"
>

<EditText
android:id="@+id/txtInput"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_margin="10px"
android:padding="4px"
android:textStyle="bold"
/>

<TextView
android:id="@+id/txtMsg"

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_margin="10px"
android:padding="4px"
android:background="#ff0000ff"
android:textStyle="bold"
/>

</LinearLayout>

23

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

23

Example 7: TextWatcher Demo
// demonstrate the use of a simple TEXTWATCHER control
package cis493.keyboarding;
…
public class TextWatcherDemo extends Activity {

EditText txtInput;
TextView txtMsg;
int keyCount = 0;
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
txtMsg = (TextView)findViewById(R.id.txtMsg);
txtInput = (EditText)findViewById(R.id.txtInput);

txtInput.addTextChangedListener(new TextWatcher() {
public void afterTextChanged (Editable theWatchedText) {

String msg = "count: " + txtInput.getText().toString().length() + " " + theWatchedText.toString();
txtMsg.setText(msg);

}
public void beforeTextChanged (CharSequence arg0, int arg1, int arg2, int arg3) {

//Toast.makeText(getApplicationContext(), "BTC " + arg0, 1).show();
}
public void onTextChanged (CharSequence arg0, int arg1, int arg2, int arg3) {

//Toast.makeText(getApplicationContext(), "OTC " + arg0, 1).show();
}

}); //addTextChangedListener

} //onCreate
}

24

7B. Android – UI – Hard & Soft Keyboard

Hard & Soft Keyboard

24

Questions?

