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1 Some Basic Randomized Algorithms

1.1 The Hiring Problem

Suppose a company wants to hire an assistant. There are n candidates for the job. The
approach of the company is the following (see Figure 1.1): It interviews each candidate,
one after the other. The first candidate it interviews gets hired. Whenever the company
interviews another candidate and that candidate is better than the one currently em-
ployed, the employed one is fired, and the new candidate is hired. Interviewing candidate
i has cost ci and hiring candidate i has cost ch. We assume ch � ci.

In the worst-case, all candidates have to be interviewed and all candidates get hired.
The worst-case occurs, if the candidates interview in increasing order of quality. The
worst-case cost is Θ(n · ci + n · ch).

A Randomized Algorithm. A simple randomized algorithm could first bring the can-
didates in a random order and then interview them. Since only the relative quality of
candidate matters, we can assume w.l.o.g. that the qualities of candidates are repre-
sented by distinct integers 1, . . . , n. Thus, our randomized algorithm behaves as the
deterministic one for an input (s1, . . . , sn) that is a random permutation of the integers
1, . . . , n.

Random Variables and their Expectation. If we do this, the number of hirings is not
a fixed number, but a number determined at random, i.e., a random variable. A discrete
random variable X over a countable set C ⊆ R assigns each element z ∈ C a probability
Prob(X = z), s.t.

1. 0 ≤ Prob(X = z) ≤ 1 for all z ∈ C, and

2.
∑

z∈C Prob(X = z) = 1.

The expectation of a random variable X is defined as

E[X] :=
∑
z∈C

z · Prob(X = z). (1.1)
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Algorithm 1: Hire

Input: A sequence (s1, . . . , sn) of n ≥ 1 positive integers, representing the
quality of the n candidates.

Output: max{s1, . . . , sn}.
1 best := 0.

2 for i = 1, . . . , n do
/* Interview candidate i: */

3 if si > best then
/* Hire candidate i */

4 best := si

5 end

6 end

Figure 1.1: An Algorithm for the Hiring Problem

One of the most useful properties of random variables is the linearity of expectation,
which means that for any two random variables X, Y , and any z ∈ R

E[X + Y ] = E[X] + E[Y ], and E[z ·X] = z · E[X].

Analyzing the Randomized Algorithm. Let X be the random variable that denotes
the number of times we hire a new candidate. We are interested in the expectation of
X, which according to (1.1) is

E[X] =
n∑
i=1

i · Prob(X = i).

Let Xi be the random variable that has value 1 if candidate i is hired and value 0,
otherwise. (Xi is an indicator random variable.) By definition of expectation,

E[Xi] = 0 · Prob(Xi = 0) + 1 · Prob(Xi = 1) = Prob(Xi = 1).

Then X = X1 + · · ·+Xn, and thus by linearity of expectation

E[X] = E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] =
∑

1≤i≤n

Prob(Xi = 1). (1.2)

2
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The Harmonic Series is defined as Hk :=∑
1≤i≤k 1/i.

Fact 1.1. ln(k + 1) ≤ Hk ≤ ln k + 1.

Proof: Since 1/k is non-increasing we have

Hk =
∑

1≤i≤k

1

i
≤ 1 +

∫ k

1

1

x
dx = 1 +

[
ln(x)

]k
1

= 1 + ln k.

and

Hk =
∑

1≤i≤k

1

i
≥
∫ k+1

1

1

x
dx = ln(k + 1).

What is the probability that the i-th
candidate is better qualified than the
first i−1 candidates? Choosing the first
i random candidates from {1, . . . , n}
can be done by first choosing a subset
S ⊆ {1, . . . , n} of cardinality i and then
bringing it in a random order. No matter
what subset S we choose, the probabil-
ity that the largest number appears last
when we bring it into a random order is
1/i. Thus, for all 1 ≤ i ≤ n,

Prob(Xi = 1) =
1

i
.

Using (1.2) and Fact 1.1, we get

E[X] =
∑

1≤i≤n

1

i
= lnn+O(1)

Thus, the expected cost of hiring using the hiring algorithm for a random permutation
of the input is now O(ci · n+ ch · log n).

1.2 Randomized Quicksort

See the textbook, pp. 3-7.

Deterministic Quicksort Recall the deterministic Quicksort algorithm, depicted in
Figure 1.2. There is no rule how to choose the pivot element. In practice, the set S is
stored in an array, and often a simple rule is applied to choose the pivot, e.g., the last
element in the array.

In the worst-case, in each recursive call for a set S, the pivot-element is always the
largest one from the set S. Then S2 = ∅ and |S1| = |S| − 1. It is not hard to see that
the number of comparisons in this case is

n− 1 + n− 2 + n− 3 + · · ·+ 1 =
n−1∑
i=1

i =
n(n− 1)

2
= Ω(n2).

3
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Algorithm 2: DetQS

Input: A set S of n different numbers, stored in an array
Output: the numbers from S in increasing order

1 Choose an arbitrary pivot y ∈ S.

2 S1 := {x ∈ S | x < y}; S2 := {x ∈ S | x > y}.
3 if S1 6= ∅ then DetQS(S1)

4 Output y

5 if S2 6= ∅ then DetQS(S2)

Figure 1.2: Deterministic Quicksort

Average Case Running Time The average case running time of an algorithm is the
expected running time for a random input. E.g., in the case of Quicksort, the average
case running time is the same as the expected running time of a random permutation of
the integers {1, . . . , n}. It is known that the average case running time of the algorithm
DetQS is Θ(n log n), not matter how the pivot element is chosen.

The average case running time is often not a very helpful complexity measure, because
in practice the data that has to be processed is rarely random. Especially for sorting
applications, the data to be sorted is often either partially sorted or inversely sorted or
has some other non-random properties. The idea of a randomized algorithm is to use
random choices to make up for a lack of randomness in the input data. While we usually
cannot rely on the randomness in the data, we can “control” the the randomness used
by an algorithm.

Randomizing Quicksort It is known that if the input set S is given by an array that
is randomly distributed, then the expected number of comparisons is only O(n log n).
We can achieve a similar behaviour even for the worst-case input, by choosing the pivot-
element uniformly at random in each round. Consider the randomized version, RandQS,
in Figure 1.3.

How Likely is the Worst Case? First note that the worst case in which in each
recursive call either the largest or smallest element is being chosen is very unlikely. For
one iteration in which a set of size k is considered, the probability that this happens is

4
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Algorithm 3: RandQS

Input: A set S of n integers
Output: the numbers from S in increasing order

1 Choose a pivot y ∈ S uniformly at random (each element in
S has probability 1/n of being chosen).

2 S1 := {x ∈ S | x < y}; S2 := {x ∈ S | x > y}.
3 if S1 6= ∅ then RandQS(S1)

4 Output y

5 if S2 6= ∅ then RandQS(S2)

Figure 1.3: Randomized Quicksort

2/k. Hence, the probability that this happens in every recursive call is

2

n
· 2

n− 1
. . .

2

2
=

2n−1

n!
≤ 2n/2

(n/2)n/2
=

(
4

n

)n/2
.

This is an exponentially small probability. But the running time can still be very
bad, even if the worst case does not occur.

Expected Running Time We are interested in the expected number of comparisons in a
run of the algorithm. Let s1, . . . , sn be the element from S such that s1 ≤ s2 ≤ · · · ≤ sn.
Let Xi,j, 1 ≤ i < j ≤ n, be indicator random variables with

Xi,j =

{
1 if si and sj are compared during a run of RandQS(S)

0 otherwise.

Note that any two elements can be compared at most once. Hence, the total number of
comparisons during a run of RandQS(S) is a random variable X, where

X =
∑

1≤i<n

∑
i<j≤n

Xi,j.

The expected number of comparisons is the expectation of X, E[X], and by linearity of
expectation, we have

E[X] = E

[ ∑
1≤i<n

∑
i<j≤n

Xi,j

]
=
∑

1≤i<n

∑
i<j≤n

E[Xi,j].

5
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Let pi,j be the probability that si and sj are being compared. Then Prob(Xi,j = 1) = pi,j.

Hence,

E[Xi,j] =
∑

z∈{0,1}

z · Prob(Xi,j = z) = 0 · Prob(Xi,j = 0) + 1 · Prob(Xi,j = 1) = pi,j.

Thus,

E[X] =
∑

1≤i<n

∑
i<j≤n

pi,j. (1.3)

To analyze this, we have to determine pi,j. Recall that s1, . . . , sn is the sorted list of
elements in S. For 1 ≤ a ≤ b ≤ n let Sa,b = {sa, sa+1, . . . , sb}. Note that each element
is chosen as pivot exactly once.

Lemma 1.2. It is Xi,j = 1 if and only if during the run of the algorithm, the first
element in Si,j chosen as pivot is in {si, sj}.

Proof: During each recursive call for a set S in which pivot y ∈ S is chosen, the following
happens:

1. y gets compared with all elements in S − {y}, and

2. S gets split up in three subsets, S< = {x ∈ S | x < y}, {y}, and S> =
{x ∈ S | x > y}.

Then recursive calls are made for S< and S>. Hence, si and sj get compared only if
there is a recursive call made for a set S that contains si and si, and either si or sj is
chosen as a pivot.

Note that due to the way S is split up, all elements in one set for which a recursive call
is being made are consecutive elements in the list s1, . . . , sn. (This is immediate from
a simple induction on the number of recursive calls.) Hence, si and sj get compared if
and only if at some point in time a recursive call is made for a set S that contains all
of si, si+1, . . . , sj and at that point either si or sj is chosen as a pivot. As long as none
of si, . . . , sj is chosen as pivot, all those elements remain in the same set, and si and sj
don’t get compared.

So now consider the point in time when for the the first time a value s∗ ∈ {si, . . . , sj}
is being chosen as pivot. Then the set S for which the recursive call of DetQS(S) is
being made when this happens contains si, . . . , sj as a subset. If s∗ ∈ {si, sj}, then
clearly s∗ gets compared with all elements in S − {s∗} and thus also with the element
in {si, sj} − {s∗}, so si and sj get compared. Otherwise, if s∗ 6∈ {si, sj} then the set S
is split into the subsets S< and S>, and S< contains si and S> contains sj. In this case,
si and sj won’t be compared during the remainder of the algorithm.

6
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The probability that si or sj is the first element in Si,j = {si, . . . , sj} to be chosen as
pivot is

2

|Si,j|
=

2

j − i+ 1
.

Hence, pi,j = 2/(j − i+ 1). Using Fact 1.1, we can simplify (1.3) as follows:

E[X] =
∑

1≤i<n

∑
i<j≤n

2

j − i+ 1
=
∑

1≤i<n

∑
1≤k≤n−i

2

k + 1
=
∑

1≤i<n

( ∑
1≤k≤n−i+1

2

k
− 1

)

= 2 ·
∑

1≤i<n

(Hn−i+1 − 1) = 2 ·
∑

1≤i≤n

(Hi − 1) = Θ

( ∑
2≤i≤n

log i

)
.

Clearly, ∑
2≤i≤n

log i ≤
∑

2≤i≤n

log n ≤ n · log n.

Moreover, for n ≥ 4, looking only at the largest n/2 terms of the following sum:∑
2≤i≤n

log i ≥
∑

n/2≤i≤n

log(n/2) =
n

2
·
(
(log n)− 1

)
= Ω(n · log n).

This yields the following theorem.

Theorem 1.3. The expected number of comparisons in an execution of RandQS is
Θ(n · log n).

7
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1.3 Verifying the Equality of Strings

Assume you have large files on your computer at home and on your computer at work.
You want to verify that the files are the same on both computers, without transferring the
files. More precisely, consider two players, Alice and Bob. Alice has a string a ∈ {0, 1}n
and Bob a string b ∈ {0, 1}n. How many bits do they have to communicate in order to
decide whether a = b?

Techniques from communication complexity show that if they want to do this deter-
ministically, they have to transfer n bits. The idea is now to compute (short) random
fingerprints f(a) and f(b) for a and b, and compare only these fingerprints with each
other. Thus, f should be some random function f : {0, 1}n → {0, 1}m for m� n.

But what is a “random function”, and how do we describe it? In general, we can use a
family of functions, F , and pick f ∈ F uniformly at random. If we do this, on average
we need at least dlog |F|e bits to describe the function f . Then Alice can send Bob the
description of f as well as f(a), and Bob can compute f(b) and compare it to f(a).

Note that Alice and Bob can interpret their strings as integers, i.e., the string x ∈ {0, 1}n
is interpreted as the integer

∑n−1
i=0 xi · 2i. Therefore, from now on assume that a and b

are integers in N ∪ {0}.

We use the family F that consists of functions fp : N→ {0, . . . , p− 1}, fp(x) = x mod p,
where p is a prime in {2, . . . , 2m− 1} (m depends on the length of Alice’s string). Thus,
in order to describe fp, Alice can send a description of the prime p to Bob.

For the ease of discussion assume now that n (the length of Alice’s string) and m are
fixed and Bob knows these two values. The protocol then works as follows: Alice picks
a random prime p from {2, . . . , 2m − 1}. Then Alice computes the fingerprint fp(a)
and sends the pair

(
p, fp(a)

)
to Bob. Now Bob can compute the fingerprint fp(b) and

compare it with fp(a). He sends the result of that comparison back to Alice.

In total, at most 2m+ 1 bits need to be transferred. But how do we choose m and what
is the error probability?

If a = b, then a mod p = b mod p, so Alice and Bob correctly decide that the strings are
equal.

If a 6= b, then an error occurs if and only if a mod p = b mod p. So we have to bound the
probability for the event “a mod p = b mod p” for a randomly chosen p in {2, . . . , 2m−1}.

Now for any positive integer M let λ(M) be the number of primes in {2, . . . ,M}.

8
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Lemma 1.4. Let x, y ∈ {0, . . . , N − 1}, x 6= y. If p is a random prime in
{2, . . . ,M − 1}, then

Prob
(
x mod p = y mod p

)
≤ logN

λ(M)
.

Proof: Assume w.l.o.g. that x > y and let d = x− y. Then x mod p = y mod p if and
only if d mod p = 0, i.e., if d is a multiple of p.

Write d as its prime factorization, i.e., d = p1 · · · pk, where each pi, 1 ≤ i ≤ k, is a prime
divisor of d. Clearly, k ≤ log d, because pi ≥ 2 for 1 ≤ i ≤ k. Hence, if we pick p at
random, the probability that p ∈ {p1, . . . , pk} is at most k/λ(M).

We get

Prob
(
x mod p = y mod p

)
≤ k

λ(M)
≤ log d

λ(M)
≤ logN

λ(M)
.

So what is λ(M)? We need the following famous statement from number theory:

Theorem 1.5.

lim
M→∞

λ(M)

M/ lnM
= 1,

and if M > 67, then

λ(M) >
M

lnM
> 1.44 · M

logM

Corollary 1.6. Whether two strings of length n are equal, can be decided randomly by
comparing two strings of length m ≥ 7, and with a one-sided error probability (false
positives) of at most n ·m/2m.

For example, pick m = max {7, dc · log ne} for some constant c. Then M = 2m > 67, so
we can apply the second part of Theorem 1.5. Then the error probability is at most

n · c · log n

2m
=
n · c · log n

nc
.

Alice needs to send only 2m = O(log n) bits to Bob (the m-bit prime and the m-bit
fingerprint). Hence, using fingerprints of logarithmic lengths, we can get arbitrary small
polynomial error probabilities.

9
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Or, pick m = log n log log n. Then the error probability is

O

(
n log n log log n

2logn log logn

)
= O

(
log n · log log n

nlog logn−1

)
=

1

nω(1)
.

In order to make this practical, we have to be able to find a random prime in {2, . . . ,M}
efficiently. We can simply choose a number uniformly at random from {2, . . . ,M} and
then test whether it is prime—we need an efficient primality test algorithm, such as the
randomized Miller-Rabin test, or the deterministic algorithm by Agrawal, Kayal, and
Saxena. If the random number is not prime, we repeat.

The probability that a random number in {2, . . . ,M} is prime is

λ(M)

M
= Θ(1/ logM).

So after an expected number of O(logM) trials, we have found a prime.

10



2 Basics in Probability Theory I

Note: This is not covered in the textbook, although some of the definitions can be found
in Appendix C.

2.1 Probability Space

Definition 2.1. A discrete probability space is a countable set Ω with a mapping Prob :
2Ω → R, such that

(A1) Prob({w}) ≥ 0 for all w ∈ Ω,

(A2) Prob(A) =
∑

w∈A Prob({w}) for all A ⊆ Ω, and

(A3) Prob(Ω) = 1.

The subsets of Ω are called events and the events of cardinality one are called elementary
events. In order to define a probability space it suffices to define Ω and the mapping
Prob for the elementary events. By Axiom (A2), the definition of Prob(A) for all other
events A is then unique.

Example 2.2. A model for the result of a die-roll: Define Ω = {1, . . . , 6} and
Prob({1}) = Prob({2}) = · · · = Prob({6}) = 1/6. The only way to satisfy ax-
iom (A2) is to define Prob(A) = |A|/6 for all A ⊆ Ω. Note that this implies
Prob(Ω) = Prob({1, . . . , 6}) = 1, so (A3) is true.

With this definition, the probability that the die shows either 1 or 2 pips is Prob({1, 2}) =
Prob({1}) + Prob({2}) = 1/3.

Example 2.3. A model for rolling two dice, one red and one blue:

• Ω := {(i, j) | 1 ≤ i, j ≤ 6}, Prob(A) = |A|/|Ω|.
• Thus, Prob({(i, j)}) = 1/36 for all 1 ≤ i ≤ j ≤ 6.

Example 2.4. A model for rolling two indistinguishable dice:

• Ω = {(i, j) | 1 ≤ i ≤ j ≤ 6}, Prob(A) = |A|/|Ω|.
• Thus, Prob({(i, j)}) = 1/|Ω| = 1/(6 + 5 + 4 + 3 + 2 + 1) = 1/21 for 1 ≤ i ≤ j ≤ 6.
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Theorem 2.5. Let (Ω,Prob) be a discrete probability space. Then for all A,B ⊆ Ω

1. 0 ≤ Prob(A) ≤ 1,

2. Prob(∅) = 0,

3. Prob
(
A
)

= 1− Prob(A),

4. A ⊆ B ⇒ Prob(A) = Prob(B)− Prob(B − A), and

5. Prob(A ∪B) = Prob(A) + Prob(B)− Prob(A ∩B) ≤ Prob(A) + Prob(B). (The
inequality Prob(A ∪B) ≤ Prob(A) + Prob(B) is called union bound.)

Example 2.6. Consider the model from Example 2.3 for throwing a blue and a red die.
We discuss two events and their probabilities.

• A: Both dice show an even number of pips.

It is |A| = 9 = 3 · 3, because there are three possibilities for each of the dice to
show an even number of pips. I.e., A contains 9 elementary events. In this model,
each elementary event has probability 1/36. Hence, Prob(A) = 9/36 = 1/4.

• B: The total number of pips is even.

Then B = B1 ∪ B2, where B1 is the event that both dice show an even number
of pips, and B2 is the event, that both dice show an odd number of pips. Hence,
Prob(B) = Prob(B1 ∪B2) = Prob(B1)+Prob(B2)−Prob(B1 ∩B2) = 1/4+1/4−
0 = 1/2.

12
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2.2 Conditional Probabilities

Definition 2.7. Let (Ω,Prob) be a probability space, and A,B ⊆ Ω. Then

Prob(A | B) :=


Prob(A ∩B)

Prob(B)
if Prob(B) 6= 0, and

0 if Prob(B) = 0.

is the conditional probability that A occurs, given that B occurs.

Example 2.8. In the analysis of randomized Quicksort, we considered the following
problem: Let S = {s1, . . . , sn} and Si,j = {si, . . . , sj}, 1 ≤ i < j ≤ n. Pick elements
from S uniformly at random (without replacement), one after the other. What is the
probability that si or sj is chosen before any other element in Si,j?

Fix some point in time at which the random element is picked from a subset S ′ ⊇ Si,j.
Let s be the element we pick. Let A be the event that s ∈ {si, sj}, and B be the event
that s ∈ Si,j. Then the conditional probability that s ∈ {si, sj} given that s ∈ Si,j is

Prob(A | B) =
Prob(A ∩B)

Prob(B)
=

Prob(A)

Prob(B)
=

2/|S ′|
|Si,j|/|S ′|

=
2

|Si,j|
=

2

j − i+ 1
.

A useful statement is the Total Probability Theorem.

Theorem 2.9 (Total Probability). For any two events A,B ⊆ Ω

Prob(A) = Prob(A|B) · Prob(B) + Prob
(
A|B

)
· Prob

(
B
)
.

Proof. By Definition 2.7 (conditional probabilities)

Prob(A|B) · Prob(B) + Prob
(
A|B

)
· Prob

(
B
)

= Prob(A ∩B) + Prob
(
A ∩B

)
.

Since A ∩B and A ∩B are disjoint, by Theorem 2.5

Prob(A ∩B) + Prob
(
A ∩B

)
= Prob

(
(A ∩B) ∪ (A ∩B)

)
= Prob(A).

Repeated application of the Total Probability Theorem yields that for any partition
B1, . . . , Bk of Ω (i.e., B1, . . . , Bk are disjoint and their union is Ω), we have

Prob(A) =
∑

1≤i≤k

Prob(A|Bi) · Prob(Bi). (2.1)

13
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Definition 2.10. Two events A and B are independent, if Prob(A|B) = Prob(A).

Theorem 2.11. Two events A and B are independent, if and only if

Prob(A ∩B) = Prob(A) · Prob(B).

14



3 A Min-Cut Algorithm

This is covered in Chapter 1.1 of the textbook, but the algorithm presented here is
slightly different.

Definition 3.1. Let G = (V,E) be an undirected graph.

1. A k-cut is a partition of V into k disjoint sets V1, . . . , Vk 6= ∅.

2. A crossing edge of a k-cut {V1, . . . , Vk} is an edge {a, b} ∈ Vi × (V − Vi) for some
1 ≤ i ≤ k.

3. A minimal k-cut of G is a k-cut that has as few crossing edges as possible.

See Figure 3.1 for a randomized algorithm, Min2Cut, that computes a 2-cut. What is
the probability that the output is a minimal 2-cut?

Fix an arbitrary minimal 2-cut {A,B} of G and let C be the set of its crossing edges
and c = |C| the number of the crossing edges. Consider a run of the algorithm, and let
ei, 1 ≤ i ≤ n− 2, be the edge picked in round i (i.e., when k = n− i+ 1).

If for the output Cut2 = {V1, V2} of the algorithm we have V1 = A or V1 = B, then the
number of crossing edges of that cut is c, and thus {V1, V2} is a minimal 2-cut. Thus,
we prove a lower bound on the probability that V1 equals either A or B.

Lemma 3.2. It is V1 = A or V1 = B, if and only if e1, . . . , en−2 6∈ C.

Proof: “⇒”: If ei ∈ C ⊆ A × B for some 1 ≤ i ≤ n, then both endpoints of ei end
up in the same set V1 or V2 (when the algorithm terminates), and thus V1 is neither A
nor B.
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Algorithm 4: Min2Cut

Input: An undirected graph G = (V,E), where V = {v1, . . . , vn}, n ≥ 2.

Output: A two-cut {V1, V2}.
1 Let k := n and Cutn :=

{
{v1}, . . . ,

{
vn
}}

.

2 while k > 2 do
3 Pick an edge e from the crossing edges of the cut Cutk uniformly at random.

4 Let U,U ′ ∈ Cutk be the disjoint sets such that one endpoint of e is in U and
the other in U ′.

5 Let Cutk−1 =
(
(Cutk − U)− U ′

)
∪ {U ∪ U ′}. /* I.e., replace the sets

U and U ′ in the cut with their union. */

6 end

7 Output the cut Cut2.

Figure 3.1: Computing a 2-Cut of a graph.

“⇐”: Now suppose e1, . . . , en−2 6∈ C. Consider some set Ck computed during the
algorithm. We show by induction on decreasing values of k that for each set U ∈ Ck it
holds either U ⊆ A or U ⊆ B. For k = n this is true since each set U ∈ Cn contains
exactly one node. Now consider an iteration in which two sets U,U ′ get merged in line 5.
Let e be the edge that was chosen in this round, so e has one endpoint in U and the
other in U ′. Since e 6∈ C, it cannot have one endpoint in A and the other in B. W.l.o.g.
assume both endpoints are in A. By the induction hypothesis, U and U ′ are subsets of
the same set, A or B, but since both have one endpoint from e and that endpoint is in
A, we conclude that U and U ′ are both subsets of A. Hence, U ∪U ′ ⊆ A. It follows that
Cutk−1 computed in the iteration contains only subsets of A and subsets of B.

From the above we get

Prob(V1 = A ∨ V1 = B) = Prob(e1, . . . , en−2 6∈ C) =

Prob(en−2 6∈ C | e1, . . . , en−3 6∈ C) · Prob(e1, . . . , en−3 6∈ C) =

Prob(en−2 6∈ C | e1, . . . , en−3 6∈ C)·
Prob(en−3 6∈ C | e1, . . . , en−4 6∈ C) · Prob(e1, . . . , en−4 6∈ C) =

· · · =

( ∏
2≤i≤n−2

Prob(ei 6∈ C | e1, . . . , ei−1 6∈ C)

)
· Prob(e1 6∈ C)

=
∏

1≤i≤n−2

Prob(ei 6∈ C | e1, . . . , ei−1 6∈ C) (3.1)

16
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For each value of 2 ≤ k ≤ n let mk be the number of crossing edges in the k-cut that is
considered in the iteration of that value of k. Note that in the i-th iteration, i.e., when
edge ei is chosen, we have k = n− i+ 1. Thus,

Prob(ei ∈ C | e1, . . . , ei−1 6∈ C) =
c

mn−i+1

,

or, equivalently,

Prob(ei 6∈ C | e1, . . . , ei−1 6∈ C) = 1− c

mn−i+1

.

We obtain from (3.1)

Prob(V1 = A ∨ V2 = B) =
∏

1≤i≤n−2

(
1− c

mn−i+1

)
. (3.2)

In order to prove a lower bound on this probability, we need to upper bound c/mn−i+1.
Recall that mn−i+1 is the number of crossing edges of the cut (V1, . . . , Vk) considered in
the i-th iteration for k = n− i+ 1. Hence, it is the number of crossing edges in a k-cut.
We now relate this number to the number of edges in a minimal 2-cut of the graph:

Observation 3.3. Let G = (V,E) have a k-cut with mk crossing edges. Then G has a
2-cut with at most 2mk/k crossing edges.

Proof: Let {V1, . . . , Vk} be a k-cut ofG. Each of themk crossing edge has two endpoints,
so there is a total of 2mk endpoints. By averaging over the k sets V1, . . . , Vk (pigeon
hole principle), it follows that there is a set Vi, such that at most 2mk/k of the crossing
edges have endpoints in Vi. Therefore, (Vi, V − Vi) is a 2-cut of G with at most 2mk/k
crossing edges.

Applying Observation 3.3 we have

c ≤ 2mk

k
and thus

c

mn−i+1

≤ 2

n− i+ 1
.

Plugging this into (3.2) yields

Prob(V1 = A ∨ V1 = B) ≥
∏

1≤i≤n−2

(
1− 2

n− i+ 1

)
=

∏
1≤i≤n−2

n− i− 1

n− i+ 1

=
n− 2

n
· n− 3

n− 1
· n− 4

n− 2
. . .

3

5
· 2

4
· 1

3
=

2

n(n− 1)
.

This is a lower bound on the probability, that the algorithm outputs a minimal 2-cut.

17
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Theorem 3.4. The algorithm Min2Cut outputs a minimal 2-cut with proability at least

2

n(n− 1)
.

The algorithm Min2Cut errs with probability less than 1 − 2/n2. In order to achieve
a smaller error probability we can repeat the algorithm k times and then choose the
minimal cut among all outputs. What is the probability that this new algorithm does
not output a minimal cut?

Let Ai, 1 ≤ i ≤ k, denote the event, that Min2Cut errs when we run it for the i-th time.
Then by Theorem 3.4, Prob(Ai) < 1− 2/n2. Whenever we repeat the algorithm, we use
random choices independent from all previous ones. Thus, the event Ai is independent
from the events A1, . . . , Ai−1, and we obtain the following bound for the probability that
Min2Cut errs k times:

Prob(A1 ∩ · · · ∩ Ak) = Prob(A1) · · ·Prob(Ak) < (1− 2/n2)k

=
(

(1− 2/n2)n
2/2
)2k/n2

<
1

e2k/n2 .

(Here we used the fact that (1− 1/t)t < 1/e for all t ≥ 1.)

E.g., if we repeat n2/2 times, then the error probability is less than 1/e. For n3/2 rep-
etitions the error probability is 1/en, i.e., it is exponentially small. But of course, for
k repetitions the running time increases by a factor of k. This technique, repeating an
algorithm multiple times to reduce the error probability, is called probability amplifica-
tion.

18



4 Basics in Probability Theory II

4.1 Random Variables

Definition 4.1. A (discrete) random variable X over a discrete probability space
(Ω,Prob) is a function X : Ω→M , where M ⊆ R is a countable set.

Notation. A random variable X : Ω → M defines a new probability space (M, pX),
where

pX({z}) = Prob({a ∈ Ω | X(a) = z}).
We use the following notation for z ∈ R.

• Prob(X = z) := pX
(
{z} ∩M

)
.

• Prob(X ≤ z) := pX({y ∈ R | y ≤ z} ∩M).

• Analogously we can define Prob(X < z), Prob(X ≥ z), Prob(X > z), etc.

Example 4.2. Let X be the random variable denoting the result of a die roll. The
probability space modeling a die roll is (Ω,Prob), where Ω = {1, . . . , 6} and Prob({w}) =
1/6 for all w ∈ Ω. The random variable X is the mapping X : Ω → N, z 7→ z.
Using the notation above, we get for example Prob(X = 5) = Prob({5}) = 1/6, and
Prob(X ≤ 3) =

∑
1≤i≤3 Prob(X = i) = 3 · 1/6 = 1/2.

Arithmetic with Random Variables. Let (Ω,Pr) be a probability space. For two
random variables X : Ω → MX , Y : Ω → MY , MX ,MY ⊆ R, and a binary operation ◦
on R, we define

X ◦ Y : Ω→M ′, z 7→ X(z) ◦ Y (z),

where M ′ = MX ◦MY = {x ◦ y | (x, y) ∈MX ×MY }.
Example 4.3. Throw a red and a blue die. Let X and Y denote the number of
pips shown by the red and the blue die, resp. Let Z denote the sum of the pips, i.e.,
Z = X + Y . Then we have

Prob(Z = 3) = Prob(X + Y = 3) = Prob({a ∈ Ω | X(a) + Y (a) = 3}) =

Prob({(1, 2), (2, 1)}) = 2/36 = 1/18.
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4.2 Expectation

Recall that for a countable set M a series
∑

i∈M s(i) is absolutely convergent, if∑
i∈M |s(i)| converges.

Definition 4.4. The expectation of a discrete random variable X : Ω→M , M ⊆ R, is

E[X] :=
∑
z∈M

z · Prob(X = z)

(
=
∑
w∈Ω

X(w) · Prob({w})

)
,

if the series is absolutely convergent.

If the series in Definition 4.4 does not converge absolutely, then the expectation of X is
not defined. Why? If the series is only conditionally convergent (i.e., convergent, but
not absolutely convergent), then by the Riemann Series Theorem the terms of the series
can be rearranged such that the series converges to any given value, or even diverges.
Of course the expectation should not depend on the order of the terms in the series,
therefore the expectation is undefined in this case.

Example 4.5. Throw one die and let X be the number of pips it shows. Then the
expectation of X is

∑
1≤i≤6

i · 1

6
=

1

6
·
∑

1≤i≤6

i =
1

6
· 6 · (6 + 1)/2 = 3.5.

Many of the random variables we analyze are running times of randomized algorithms.
Such random variables are usually positive integers. If X > 0 and X ∈ N with proba-
bility 1, then there is a very useful characterizations of the expectation.

Theorem 4.6. Let X : Ω→ N ∪ {0} be a random variable. If E[X] exists, then

E[X] =
∞∑
i=0

Prob(X > i).
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Proof:

E[X] =
∞∑
k=0

k · Prob(X = k) =
∞∑
k=1

k · Prob(X = k)

= Prob(X = 1) + 2 · Prob(X = 2) + 3 · Prob(X = 3) + . . .

=
∞∑
k=1

Prob(X = k) +
∞∑
k=2

Prob(X = k) +
∞∑
k=3

Prob(X = k) + . . .

=
∞∑
i=1

∞∑
k=i

Prob(X = k) =
∞∑
i=1

Prob(X ≥ i)

=
∞∑
i=1

Prob(X > i− 1) =
∞∑
i=0

Prob(X > i)

Example 4.7 (Geometric Distribution). A random variable X : Ω → N geometrically
distributed with parameter q, if

Prob(X = k) = q(1− q)k−1 for k ∈ N.

For example, how often, on average, do we have to repeat the Min2Cut Algorithm in
order to find a minimal 2-cut? Let q be the probability that the algorithm outputs a
minimal 2-cut, and let X be the number of repetitions, until the Min2Cut Algorithm
succeeds. By Theorem 3.4, we have q ≥ 2/

(
n(n− 1)

)
. The probability that the algo-

rithm succeeds after exactly k repetitions, is that it fails k− 1 times, and then succeeds.
Since the repetitions are independent,

Prob(X = k) = (1− q)k−1 · q.

Thus, the random variable X is geometrically distributed with parameter q ≥
2/
(
n(n− 1)

)
. So what is E[X]?

For a geometrically distributed random variable it holds by Theorem 4.6

E[X] =
∑
k≥0

Prob(X > k) =
∑
k≥0

(1− q)k = lim
n→∞

n∑
k=0

(1− q)k

= lim
n→∞

(1− q)n+1 − 1

(1− q)− 1
=

1

q
. (4.1)

Thus, the expected number of repetitions, until the Min2Cut algorithm outputs a min-
imal 2-cut, is at most n(n− 1)/2.
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Lemma 4.8 (Linearity of Expectation). Let X and Y be two random variables and
a ∈ R. Then

E[a ·X] = a · E[X] and E[X + Y ] = E[X] + E[Y ].

Proof: Let X : Ω→M and Y : Ω→M ′, M,M ′ ⊆ R.

1. We have

E[a ·X] =
∑
z∈a·M

z · Prob(a ·X = z) =
∑
z∈a·M

z · Prob(X = z/a)

=
∑
z/a∈M

(z/a) · a · Prob(X = z/a)
z′=z/a

= a ·
∑
z′∈M

z′ · Prob(X = z′) = a · E[X].

2. Exercise.

Example 4.9. Consider a weighted coin which shows heads with probability p. If we flip
the coin n times, how often do we expect it to show heads? Let X be the corresponding
random variable. Then X = X1 + · · · + Xn, where Xi = 1 is an indicator random
variable with value 1 if the i-th coin flip shows heads and with value 0 otherwise. It
holds E[Xi] = p and by linearity of expectation E[X] = n · p.

Theorem 4.10. If X and Y are independent random variables and whose expectations
exist, then

E[X · Y ] = E[X] · E[Y ].

(Without proof.)
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5 Binary Planar Partitions

See Section 1.3 in the textbook.

Consider a set S = {s1, . . . , sn} of line segments in the plane R2. Given a location p of a
camera outside of the convex hull of S, we would like to draw the line segments as they
look like from the perspective of the camera. Parts of line segments that are “hidden”
behind other line segments should not be visible. The idea is to use an algorithm that
first paints the line segments that are the furthest away from the camera, and then paint
closer ones, overpainting the hidden line segment parts. We would like to postprocess
the set S of line segments in such a way, that given p we can quickly draw the line
segments.

During the postprocessing phase we construct a data structure that is called a binary
planar partition, defined in the following. Let T be a binary tree, where each inner node
is labeled with a line in the plane R2. Then each node in the tree corresponds to a
convex subset of R2 (which we will sometimes call region), determined recursively as
follows:

1. The root of T corresponds to R2.

2. Let v be a node labeled with a line `v, and let Rv ⊆ R2 be the convex set cor-
responding to v. The line `v splits R into two convex subsets R0 and R1 (R0

containing `v ∩R), and the children of `v correspond to these subsets.

Definition 5.1. Let S = {s1, . . . , sn} be a set of non-intersecting line segments in the
plane. A binary partition of S is a binary tree T whose internal nodes are labeled with
lines in the plane, such that each region corresponding to a leaf in the tree contains at
most one (not necessarily complete) line segment of S.

A binary partition T is an autopartition of S, if each node is labeled with a line ` such
that si ⊆ ` for some i ∈ {1, . . . , n}.

5.1 The Painter’s Algorithm.

We compute a binary partition T of S in a preprocessing step. Then, given the location
of the camera, p, and the root r of T , we run the algorithm Paint(r, p) (see Algorithm 5).
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Algorithm 5: Paint

Input: A vertex u in T and a point p ∈ R2

1 if u is a leaf then
2 paint the part of the line segment in Ru (if any).

3 else
4 Let v, w be the children of u, such that Rw is “behind” line `u from the

perspective of the camera, i.e., Rw is farther away from p than Rv (if p is on
`u, then the order is arbitrary).

5 Paint(w, p)

6 Paint(v, p)

7 end

It is desirable to have a binary planar partition as small as possible, because the running
time of the painter’s algorithm grows with the tree size. Since segments are broken into
smaller pieces, it is not clear that a solution of size O(n) exists.

5.2 A Randomized Algorithm for Binary Autopartitions

For a line segment s, we denote by `(s) the line extending s in both directions. Algo-
rithm 6, RandAuto, computes a binary autopartition of a set of non-intersecting line
segments, where `(s) 6= `(s′) for any two segments s, s′ from the input. Note that if
there are two line segmenst s, s′ with `(s) = `(s′) an autopartition might not exist.
However, in order to achieve that no two lines `(s), `(s′) are the same, we can rotate
each line by a very small (negligible) angle. The assumptions that the line segments are
non-intersecting is not problematic either, because two intersecting segments can be cut
into four non-intersecting segments.

Theorem 5.2. The expected size of the tree returned by RandAuto is O(n log n).

Proof: Let ind(si, sj) be the number of line segments one intersects if one extends seg-
ment si in one direction until the extension hits sj (hitting sj counts as one intersection).
If `(si) does not intersect sj, then ind(si, sj) =∞.

We write si a sj, if si 6= sj, and segment sj is cut by `(si) in the partition defined by
T . More formally, there is a vertex v in T , labeled with `v = `(si), such that the part of
the line segment of sj that lies in Rv (i.e., Rv ∩ sj) intersects with `v.
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5.2 A Randomized Algorithm for Binary Autopartitions

Figure 5.1: An example (taken from the textbook) for a binary planar partition (not
an autopartition). The line segments are s1, s2 and s3, and the partition is
formed by the lines L1, L2 and L3. Each leaf is labeled by the line segment
that the region corresponding to that leaf contains.

Algorithm 6: RandAuto

Input: A set S = {s1, . . . , sn} of non-intersecting line segments, where
`(si) 6= `(sj) for all 1 ≤ i < j ≤ n.

Output: A binary autopartition T of S.

1 Pick a permutation π of {s1, . . . , sn} uniformly at random from the n!
permutations.

2 while T has a leaf v corresponding to a convex set Rv that contains more than
one segment do

3 Label v with `(si), where si is first segment in the ordering π that intersects
Rv.

4 Add the corresponding children to v (choose the children in such a way that
the region that does not intersect si contains another line segment from Rv).

5 end

6 Output T .
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We consider the following random variables for 1 ≤ i, j ≤ n:

Ci,j =

{
1 if si a sj.
0 otherwise.

The total number of uncut line segments is n+
∑

1≤i,j≤nCi,j. This is equal to the total
number of leaves in the tree—note that every region corresponding to a leaf intersects
with exactly one line segment.

Thus, the expected number of leaves in the tree is

E[n+
∑

1≤i,j≤n

Ci,j] = n+
∑

1≤i,j≤n

E[Ci,j] (5.1)

What is the probability that Ci,j = 1, or, equivalently, that si a sj? Consider the one
sided extension of si that hits sj. Let k = ind(si, sj), and r1, . . . , rk−1, rk = sj be the
line segments that the extension intersects until it hits sj. Then none of the segments
{r1, . . . , rk−1, sj} can appear in π before si: Consider the time at which `(si) is chosen
and when it splits a region Rv containing the intersection point of `(si) and sj. Then
the intersection points of `(si) and r1, . . . , rk are all in Rv, too. Hence, each of the line
segments r1, . . . , rk intersects Rv. Since none of them was chosen, si must come before
any of them in π.

The probability that si comes before all of r1, . . . , rk is 1/(k + 1). Hence,

E[Ci,j] = Prob(Ci,j = 1) ≤ 1

ind(si, sj) + 1
,

and thus by (5.1) the expected number of leaves in T is at most

n+
∑

1≤i,j≤n

E[Ci,j] ≤ n+
∑

1≤i≤n

∑
1≤j≤n

1

ind(si, sj) + 1
.

For fixed i and any 1 ≤ k ≤ n−1, there are at most two possible values for j ∈ {1, . . . , n}
such that ind(si, sj) = k (extend the segment in both directions). We obtain

n+
∑

1≤i≤n

∑
1≤j≤n

1

ind(si, sj) + 1
≤ n+

∑
1≤i≤n

∑
1≤k≤n−1

2

k + 1
= n+ 2

∑
1≤i≤n

∑
2≤k≤n

1

k

= n+ 2
∑

1≤i≤n

(Hn − 1) = O(n log n).

Hence, O(n log n) is an upper bound on the expected number of leaves in the tree T .
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6 Basics in Probability Theory III — Conditional
Expectation

Sometimes we want to compute the expectation of one random variable, under the
condition that another random variable has a certain value. For example, let X and Y
be two discrete random variables. Then given that Y = y for some value y ∈ R, X has a
different probability distribution (unless X and Y are independent). Hence, we obtain a
new random variable Z = (X|Y = y), where Prob(Z = i) = Prob(X = i|Y = y). This
way, the notion E[X|Y = y] is just the expectation of Z, i.e.,

E[X|Y = y] =
∑
x

x · Prob(X = x|Y = y).

Lemma 6.1. Let (Ω,Prob) be a probability space with two discrete random variables
X : Ω→M and Y : Ω→M ′, where M,M ′ ⊆ R. If E[X] exists, then

E[X] =
∑
y∈M ′

E[X|Y = y] · Prob(Y = y).

Proof. Since E[X] exists, the sums below converge absolutely. Applying Theorem 2.9,
we obtain

E[X] =
∑
x∈M

x · Prob(X = x)

(2.1)
=
∑
x∈M

x ·
∑
y∈M ′

Prob(X = x|Y = y) · Prob(Y = y)

=
∑
y∈M ′

Prob(Y = y)
∑
x∈M

x · Prob(X = x|Y = y)

=
∑
y∈M ′

Prob(Y = y)E[X|Y = y].
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7 Token Processes

7.1 A Simple Board Game

Consider the following game played on a board with n fields, labeled 0, . . . , n−1 from left
to right. We place a token on the first field with number 0. In several rounds we move
the token towards the right, until it falls off the board. The number of positions we are
allowed to move the token in the i-th round is a random variable Xi ∈ {1, . . . , n− 1},
which is determined by some random experiment. Suppose we cannot make any as-
sumption on the random variables Xi, for example we don’t know whether they are
independent. However, suppose we know an upper bound on the expected step size
Xi. Can we conclude on a lower bound for the number of rounds we have to play this
game, until the token falls off the board? Below we discuss a technique that allows us to
elegantly analyze this simple board game, but that also has several applications beyond
that.

7.2 Wald’s Theorem

The following theorem is very useful for analyzing certain random experiments, such as
the board game described above.

Theorem 7.1 (Wald’s Theorem). Let X1, X2, . . . be a sequence of non-negative random
variables and let T ∈ N be a random variable, such that the expectations of T and Xk

exist for all k. Let ∼ be one of the relations =,≤,≥, <,>, and suppose that

E[Xk|k ≤ T ] ∼ µ

for some µ ∈ R and for all k ≥ 1. Then

E[X1 + · · ·+XT ] ∼ µ · E[T ].

Proof. Let Ik = 1 if T ≥ k and Ik = 0, otherwise. Since E[Xi] exists (the sum is
absolutely convergent) and E[T ] exists, obviously E[X1+· · ·+XT ] exists, too. Therefore,
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the sums in the following derivation are all absolutely convergent and can be reordered
arbitrarily.

E[X1 + · · ·+XT ] = E

[∑
k∈N

XkIk

]
=
∑
k∈N

E[XkIk]

=
∑
k∈N

E[XkIk|Ik = 0] · Prob(Ik = 0) + E[XkIk|Ik = 1] · Prob(Ik = 1)

Clearly, E[XkIk|Ik = 0] = E[0] = 0, and since Ik = 1 iff k ≤ T ,

E[X1 + · · ·+XT ] =
∑
k∈N

E[XkIk|Ik = 1] · Prob(Ik = 1)

=
∑
k∈N

E[Xk · 1|Ik = 1] · Prob(Ik = 1)

=
∑
k∈N

E[Xk|k ≤ T ] · Prob(k ≤ T )

=
∑
k∈N

E[Xk|k ≤ T ] · Prob(k ≤ T )

∼
∑
k∈N

µ · Prob(k ≤ T )

= µ
∑
k∈N

Prob(k ≤ T )

= µ
∑
k≥0

Prob(T > k)

= µ · E[T ].

Now consider again the board game as described in the beginning of the previous section.
Recall that Xi is the number of positions we can move the token forward in the i-th
round and that the expected number of steps we are allowed to make is at most z. To
be precise, we only know this for the step sizes as long as the game is not over, i.e., we
have

E[Xi|i ≤ T ] ≤ z.
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Let T be the number of rounds until the token falls off the board. This means in T rounds
the token is moved to the right by at least n positions in total. Hence, X1 +· · ·+XT ≥ n,
and thus E[X1 + · · ·+XT ] ≥ n. Using Wald’s Theorem with “≤” for the relation “∼”,
we get

n ≤ E[X1 + · · ·+XT ] ≤ E[T ] · z

and thus

E[T ] ≥ n/z.

7.3 Jensen’s Inequality

Another inequality that is often very useful is described by the following theorem. Recall
that a function is convex if the graph of the function lies not above below the line segment
joining any two points of the graph. More precisely, f : R → R is convex if for any
x1, x2 ∈ R and t ∈ [0, 1]

f
(
t · x1 + (1− t)x2

)
≤ t · f(x1) + (1− t) · f(x2)

(See Figure 7.3.)

Theorem 7.2. Let X be a random variable and f : R → R a function such that E[X]
and E[f(X)] exist. Then

(a) f(E[X]) ≤ E[f(X)] if f is convex, and

(b) f(E[X]) ≥ E[f(X)] if f is concave.

Proof. Let µ = E[X]. Let `(x) = f(µ) + α(x − µ) for some α. I.e., the line `(x) goes
through the point

(
µ, f(µ)

)
and has slope α. Since f is convex, we can choose α such

that `(x) ≤ f(x) for all x ∈ R. (Line ` is a supporting line for f(x); if f is differentiable,
we can choose α = f ′(µ).) Then

E[f(X)] ≥ E[`(X)] = E[f(µ) + α(X − µ)] = f(µ) + α · (E[X]− µ) = f
(
E[X]

)
.

The last equality follows from our choice of µ = E[X].
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7 Token Processes

Figure 7.1: A convex function

Function Find(S, k)

Input: A set S of n integers, and an integer k ∈ {1, . . . , n}.
Output: An integer x ∈ S.

1 Pick y ∈ S uniformly at random.

2 if |S| = 1 then return y

3 S< := {x ∈ S | x < y}
4 S> := {x ∈ S | x > y}
5 if |S<| ≥ k then Find(S<, k)

6 if |S<| = k − 1 then Find ({y}, 1)

7 if |S<| < k − 1 then Find (S>, k − |S<| − 1)

Figure 7.2: Finding the element of a given rank.
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7.4 Application: Finding an Element of a Given Rank

Let S be a set of n distinct integers. The rank of an element x ∈ S is the integer k such
that x is the k-th smallest element in S. I.e., if S = {s1, . . . , sn}, where s1 < · · · < sn,
then si has rank i. The algorithm Find (see Figure 7.2) returns for a given set S and
an integer k ∈ {1, . . . , |S|} the element of rank k in S.

The algorithm’s correctness is clear. Often we have to analyze the number of recursive
calls of an algorithm. What is the number of recursive calls of Find? Intuitively, during
each recursive call the pivot element y should be somewhere in the “middle” of the sorted
list of S. Thus, we conjecture that the expected number of recursive calls is Θ(log n).
In the following, we use Wald’s Theorem to prove a lower bound of Ω(log n).

Let S0 = S and S1, S2, S3, . . . , ST , where ST = {sk} be the sets used for the recursive
calls. (I.e., Si is the argument of the i-th recursive call.) Further, let ni = |Si|. Then
n0 = n and nT = 1. Finally, let

Xi = log

(
ni−1

ni

)
= log(ni−1)− log(ni) for 1 ≤ i ≤ T .

It is not hard to show that E[Xi | i ≤ T ] = O(1):

Claim 7.3. Consider an arbitrary set S of size m ≥ 2 and let S ′ be the set of size m′

obtained during the first recursive call of Find(S, k). Then

E[log(m/m′)] = O(1).

A proof of this statement can be found at the end of this section. Hence, for some
constant z,

E[Xi|i ≤ T ] ≤ z. (7.1)

On the other hand, since n0 = n and nT = 1, we have

X1 + · · ·+XT = log

(
n0

n1

)
+ · · ·+ log

(
nT−1

nT

)
= log

(
n0

n1

· · · nT−1

nT

)
= log

(
n0

nT

)
= log n.

In particular, this means that E[X1 + · · · + XT ] = log n. We can now apply Wald’s
Theorem with (with “≤” in place of “∼”), and obtain

log(n) = E[X1 + · · ·+XT ] ≤ E[T ] · z,
and so the expected number of recursive calls is

E[T ] ≥ log n

z
= Ω(log n).
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Proof of Claim 7.3. If i = k, then m′ = 1 and otherwise m′ ≥ 1. Thus, for i ∈
{1, k,m}, log(m/m′) ≤ log(m) and for i 6∈ {1, k,m}:

log(m/m′) ≤ log (max{m/(i− 1), m/(m− i)}).

The probability that i ∈ {1, k,m} is at most 3/m, and so we get

E
[
log
(m
m′

)]
≤ 3 · logm

m
+

∑
1<i<m,i 6=k

1

m
· log

(
max

(
m

i− 1
,

m

m− i

))
. (7.2)

Clearly, 3 · logm/m = O(1), so it suffices to show that the second part of the above sum
is O(1). If i is an integer then i− 1 < m− i if i ≤ m/2, and i− 1 ≥ m− i if i > m/2.
Hence, max{m/(i − 1), m/(m − i)} equals m/(i − 1) for i ≤ m/2 and m/(m − i) for
i > m/2. Thus we have∑

1<i<m,i 6=k

1

m
· log

(
max

(
m

i− 1
,

m

m− i

))
≤

∑
1<i≤m/2

log (m/(i− 1))

m
+

∑
m/2<i<m

log (m/(m− i))
m

≤ 2 ·
∑

1≤j<m

log(m/j)

m

≤ 2

m
·
∑

1≤j<m

dlog(m/j)e.

For any 1 ≤ r ≤ logm, if m/2r ≤ j < m/2r−1, then 2r−1 < m/j ≤ 2r and thus
dlog(m/j)e = r. Hence, there are at most m/2r values of j ∈ {1, . . . ,m − 1} such that
dlog(m/j)e = r. It follows that the sum above is bounded by

2

m
·
∑

1≤r≤logm

r · m
2r

= 2 ·
∑

1≤r≤logm

r

2r
≤ 2 ·

∞∑
r=1

r

2r
= O(1).

(For the last step we used the well-known fact that
∑∞

i=0 (ia/bi) = O(1) for any a, b ∈ R,
b > 1.) Now, from (7.2) it follows that E[log(m/m′)] = O(1).

7.5 A Probabilistic Recurrence

Our next goal is to find an upper bound on the number of recursive calls. For this we
look at a different technique.
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Observation 7.4. Let g : R×R→ R, and X and Y be two discrete random variables.
Further, assume that

E[g(X, Y ) |Y = y] ≤ f(y)

for some function f . Then
E[g(X, Y )] ≤ E[f(Y )].

(Note that E[g(X, y)] depends only on the random variable X, while E[g(X, Y )] depends
on two random variables.)

Proof:

E[g(X, Y )] =
∑
x,y

g(x, y) · Prob(X = x ∧ Y = y)

=
∑
y

∑
x

g(x, y) · Prob(X = x|Y = y) · Prob(Y = y)

=
∑
y

Prob(Y = y)
∑
x

g(x, y) · Prob(X = x|Y = y)

=
∑
y

Prob(Y = y)E
[
g(X, Y )|Y = y

]
≤
∑
y

Prob(Y = y)f(y)

= E[f(Y )].

Now consider the board game from the beginning of this section. For convenience we
now start with the token at position n− 1 and move it towards the 0. Assume that the
token is in position m. We pick a random number Xm ∈ {1, . . . ,m− 1} according to
some distribution, and then we move the token to position m−Xm.

Let Tn be the time it takes the token to reach space 1, when started in position n. What
is an upper bound for Tn?

Of course we need some knowledge about the distribution used to pick the random
numbers Xm. Assume that if the token is in position m, then the step size Xm has
expectation E(Xm) ≥ g(m) for some non-decreasing function g : R≥0 → R≥0

Theorem 7.5. E[Tn] ≤
∫ n

1

dx

g(x)
.
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Proof: Let f(m) =

∫ m

1

dx

g(x)
.

We prove by induction on n that E[Tn] ≤ f(n). For n = 1, the Tn = f(n) = 0, so there
is nothing to show.

Now assume that n > 1. In the first step, the token moves from position n to position
n−Xn, where for the step size Xn it holds E[Xn] ≥ g(n). Thus,

E[Tn] = 1 + E[Tn−Xn ] (7.3)

Note that here the expectation is taken over the random variable “Tn−Xn”, whose value
depends on the outcome of two random experiments: The chosen step size, Xn, and the
time it takes to go from space n−Xn to space 1. Even once Xn is fixed to some value
i, Tn−i is still a random variable whose value depends on future events.

But we know from the induction hypothesis that E[Tn−i] ≤ f(n − i) for all i. Hence,
E[Tn|Xn = i] ≤ 1 + f(n− i). From Observation 7.4 it follows that

E[Tn| ≤ E[1 + f(n−Xn)] = 1 + E[f(n−Xn)].

Hence,

E[Tn] ≤ 1 + E[f(n−Xn)]

= 1 + E

[∫ n−Xn

1

dx

g(x)

]
= 1 + E

[∫ n

1

dx

g(x)
−
∫ n

n−Xn

dx

g(x)

]
= 1 + E

[
f(n)−

∫ n

n−Xn

dx

g(x)

]
lin. of exp.

= 1 + f(n)− E
[∫ n

n−Xn

dx

g(x)

]
g non-dec.

≤ 1 + f(n)− E
[∫ n

n−Xn

dx

g(n)

]
= 1 + f(n)− E[n− (n−Xn)]

g(n)

= 1 + f(n)− E[Xn]

g(n)
E[Xn]≥g(n)

≤ f(n).
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Theorem 7.6. The expected number of recursive calls of Find is at most 4 lnn.

Proof. Consider a set S of size m obtained during a call of Find. Let S ′ be the set for
which we call Find(S ′) recursively (if we don’t call Find recursively, then S ′ = ∅). Thus,
in one step the process replaces S with a set S ′, and the progress is Xm = |S| − |S ′| =
m−|S ′| for some random variable Xm. We show that E[Xm] ≥ m/4. The theorem then
follows from Theorem 7.5 for g(m) = m/4, because for the expected number of recursive
calls, Tn,

E[Tn] ≤
∫ n

1

dx

x/4
= 4 ·

∫ n

1

dx

x
= 4 ·

(
ln(n)− ln(1)

)
= 4 · lnn.

Hence, it remains to show that E[Xm] ≥ m/4. When does Xm have a value of i,
i ∈ {1, . . . ,m− 1}? Assume that the pivot y has rank r, 1 ≤ r ≤ m. Then |S1| = r − 1
and |S2| = m − r − 1. If r = k, then S ′ = {y}, and thus Xm = m − 1. If r < k,
then S ′ = S2 and thus Xm = m − |S2| = r + 1. If r > k, then S ′ = S1 and thus
Xm = m− |S1| = m− r + 1.

For any r ∈ {1, . . . ,m}, the pivot y has rank r with probability 1/m Hence, we obtain

E[Xm] =
m− 1

m
+

k−1∑
r=1

r

m
+

m∑
r=k+1

m− r + 1

m
=
m− 1 +

∑k−1
r=1 r +

∑m−k
i=1 i

m

≥ m− 1 + (k − 1)k/2 + (m− k)(m− k + 1)/2

m
≥ k2 + (m− k)2

2m
. (7.4)

Note that a2 +b2 with a+b = c is minimal if a = b = c/2. Thus, a2 +b2 ≥ 2((a+b)/2)2 =
(a+ b)2/2. We obtain from (7.4)

E[Xm] ≥ m2/2

2m
=
m

4
.

7.6 Another Token Process and the Trick of Logarithms

In the following we give another example of a token process. To analyze it we use the
techniques discussed in the previous sections.

We maintain a population of objects, and in subsequent rounds we decrease the size of
the population. In the beginning we have a population of n objects. If at the beginning
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of some round we have m objects, during the round we decide independently for each
object in the population whether we throw it out or not. More precisely, each object
remains in the population only with probability 1/

√
m. Hence, given that a round

starts with a population of size m, the expected size of the population after the round
is m/

√
m =

√
m.

We could simulate this with a token process on a board with n spaces, where from a
space m the token moves to a new space m−Xm, where E[Xm] = m−

√
m. However,

this is a bit difficult to analyze. Instead, we use a logarithmic scale, and keep track of
the logarithm of the size of the population.

Thus, the token process is played on the set of real numbers in log 1, log 2, . . . , log n. We
start at position log n. A position ` means that we have a population of size m = 2`.
Thus, we move to position `′ = log(2` −X2`). Note that

E[X2` ] = 2` −
√

2` = 2` − 2`/2. (7.5)

We are interested in the expected step size of this new token process. Hence, if we are in
position ` and move to `′, what is E[`− `′]? Let Z` = `− `′ denote that progress, given
that we start in position `. (I.e., ` is fixed and `′ is a random variable.) Then E[Z`] =
E[`− `′] = `−E[`′]. Recall that `′ = log(2`−X2`). Hence, E[Z`] = `−E[log(2`−X2`)].
Since the mapping x 7→ log x is concave we have by Jensen’s Inequality:

E[log(2`−X2`)] ≤ log
(
E[2` −X2` ]

)
= log

(
2` − E[X2` ]

) (7.5)
= log(2`− (2`− 2`/2)) = `/2.

Hence, E[Z`] ≥ `/2. We use Theorem 7.5 with g(x) = `/2, which is non-decreasing.
Then the expected time until the token reaches position 1 is at most∫ logn

1

dx

g(x)
≤
∫ logn

1

dx

x/2
=

[
2 lnx

]logn

x=1

= O(log log n).
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8 Tail Bounds

8.1 Markov’s Inequality

Theorem 8.1 (Markov Inequality). Let X : Ω → M be a random variable over the
probability space Ω, where M ⊆ R≥0 is a countable set. If E[X] exists, then for all
t ∈ R>0,

Prob(X ≥ t) ≤ E[X]

t
.

Proof. In the following we sum only over values of i in M . Since E[X] exists, these sums
converge absolutely.

Prob(X ≥ t) =
∑
i≥t

Prob(X = i) ≤
∑
i≥t

i

t
· Prob(X = i) ≤

∑
i∈M

i

t
· Prob(X = i)

=
1

t
·
∑
i∈M

i · Prob(X = i) =
E[X]

t
.

Consider for example the algorithm Find() from Section 7.4, which finds in a set S of
size n the element of a given rank, k. We have proved that the expected running time
of that algorithm is Θ(log n). Let T be the random variable that denotes the time it
takes to execute Find() for some input of size n. Hence, E[T ] = O(log n). By Markov
Inequality we know that

Prob
(
T ≥ (log n)2

)
≤ E[T ]

(log n)2
= O

(
1

log n

)
.

Hence, the probability that the Find() algorithm does not terminate after log2 n steps
is bounded by O(1/ log n).

Often, Markov Inequality does not give tight bounds. For example, it is not hard
to see that the Find() algorithm never requires more than n recursive calls. Hence,
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Prob(T ≥ n2) = 0 (for large enough n). On the other hand, if we apply Markov In-
equality, the best bound we get is

Prob
(
T ≥ n2

)
≤ E[T ]

n2
= O

(
log n

n2

)
.

8.2 Chernoff Bounds

Definition 8.2. A random variable X is binomially distributed with parameters n ∈ N
and q ∈ [0, 1], if

Prob(X = k) =

(
n

k

)
qk(1− q)n−k. (8.1)

Example 8.3. Let 0 ≤ q ≤ 1 and n ∈ N. Consider the set [n] := {1, . . . , n}. We can
sample a set S ⊆ [n] at random as follows: For each element i ∈ [n] we independently
decide whether i is added to S or not, and the probability that i is added to S is q.

Let X = |S|. Then X is binomially distributed with parameters n and q: For each fixed
set R ⊆ [n] with |R| = k, the probability that S = R is exactly qk(1 − q)n−k (the k
elements in R have been chosen for S and the n − k elements not in R have not been
chosen for S). Hence, the number of all

(
n
k

)
subsets of [n] with size k is the term in (8.1).

Often we are only interested in upper bounds on the probability that a binomially
distributed random variables deviates from its expectation. I.e., if X is binomially dis-
tributed, we would like to obtain upper bounds on the probability that X < (1− δ)E[X]
or X > (1+δ)E[X] for small values of δ. Chernoff Bounds allow us to obtain such upper
bounds.

A sequence of random variables X1, . . . , Xn is called Poisson trials, if Xi takes only the
values 0 or 1. Poisson trials X1, . . . , Xn are called Bernoulli trials, if there is a p such
that Prob(Xi = 1) = p for all 1 ≤ i ≤ n.

Theorem 8.4. Let X1, . . . , Xn be independent Poisson trials, X =
∑

1≤i≤nXi, and
µ = E[X]. Then for δ > 0, 0 < ε ≤ 1, and for D ≥ 6µ it holds

Prob(X ≥ (1 + δ)µ) ≤ eδ·µ

(1 + δ)(1+δ)µ
(8.2)

Prob(X ≥ (1 + ε)µ) ≤ e−µε
2/3 (8.3)

Prob(X ≥ D) ≤ 2−D. (8.4)
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Proof: Let pi = E[Xi] = Prob(Xi = 1). Further, let t > 0 – we pick the “best t” later.

Finally, let Yi = etXi for 1 ≤ i ≤ n, and Y = etX . Then

E[Yi] = et·1Prob(Xi = 1) + et·0Prob(Xi = 0) = pie
t + 1− pi = 1− pi(1− et)

Note that 1 + x ≤ ex for all x. We apply this inequality for x = −pi(1− et) and obtain

E[Yi] = 1− pi · (1− et) ≤ exp
(
−pi · (1− et)

)
= exp

(
pi · (et − 1)

)
.

Since X1, . . . , Xn are independent, so are Y1, . . . , Yn. Hence, for Y = Y1 · · · · ·Yn we have

E[Y ] = et(X1+···+Xn) = E

[ ∏
1≤i≤n

Yi

]
=
∏

1≤i≤n

E[Yi] ≤
∏

1≤i≤n

exp
(
pi · (et − 1)

)
= exp

(
(et − 1)(p1 + · · ·+ pn)

)
= exp

(
(et − 1)µ

)
. (8.5)

By applying Markov’s inequality (MI):

Prob(X ≥ (1 + δ)µ) = Prob
(
Y ≥ et(1+δ)µ

) (MI)

≤ E[Y ]

et(1+δ)µ
≤ e(et−1)µ

et(1+δ)µ
.

We can now choose t, depending on δ. Let t = ln(1+δ) (> 0), and recall that 1+x < ex

for all x 6= 0. Then

Prob(X ≥ (1 + δ)µ) ≤ e(1+δ−1)·µ

(1 + δ)(1+δ)µ
=

eδ·µ

(1 + δ)(1+δ)µ
.

This is (8.2).

Using basic calculus, it is not hard to see that for 0 < δ ≤ 1

eδ

(1 + δ)1+δ
≤ e−δ

2/3.

This implies (8.3).

In order to show (8.4) let D ≥ 6µ. Let δ = D/µ− 1 ≥ 5, thus D = (1 + δ)µ. Hence, by
(8.2)

Prob(X ≥ D) = Prob(X ≥ (1 + δ)µ) ≤ eδµ

(1 + δ)(1+δ)µ
≤
(

e

1 + δ

)(1+δ)µ

≤
(e

6

)D
≤ 2−D.
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Theorem 8.5. Let X1, . . . , Xn be independent Poisson trials, X =
∑

1≤i≤nXi, and
µ = E[X]. Then for 0 < δ < 1

Prob(X ≤ (1− δ)µ) ≤ e−δ·µ

(1− δ)(1−δ)µ (8.6)

Prob(X ≤ (1− δ)µ) ≤ e−µδ
2/2. (8.7)

The proof is very similar to the one of Theorem 8.4.

Example: Balls Into Bins. Suppose we throw m balls into n bins, and for each ball we
choose its bin uniformly at random, and independent from all other ball/bin pairings.
Clearly, the expected load of each bin will be m/n. What is the probability that some
bin has a load that deviates significantly from this? Using Chernoff Bounds, upper
bounds for such events are relatively easy to obtain.

For now consider the first bin only. Let Xi be the indicator variable, where Xi = 1 if and
only if the i-th ball is thrown into the first bin. Then X =

∑
1≤i≤nXi is the number of

balls that end up in the first bin. Moreover, X1, . . . , Xm are independent Poisson trials,
and Prob(Xi = 1) = 1/n for 1 ≤ i ≤ n. Hence, µ := E[X] = m/n.

Now let for example m = n and c be an arbitrary constant such that c · log n ≥ 6. Using
(8.4)

Prob(X ≥ c · log n · µ) ≤ 2−c logn = n−c.

The probability that there is a bin which has more than c log n ·m/n balls is at most
n−c+1 (by simply summing up the probabilities n−c for each bin).

Chernoff Bounds can sometimes be weaker than good ad-hoc analyses. For example, let
m = c · lnn. What is the probability that the first bin is empty?

Prob(X = 0) = Prob(X ≤ (1− 1)µ) ≤ e−m/(2n) = e−(c/2) lnn = n−c/2.

Hence, the probability that there exists an empty bin is at most n−c/2−1. Later, we use
an “ad-hoc” analysis to prove a bound of n−c−1.
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9 Randomized Complexity Classes

9.1 Las Vegas and Monte Carlo Algorithms

A Las Vegas algorithm is a randomized algorithm which always outputs the correct
result, but the running time may be a random variable. An example of a Las Vegas
algorithm is Randomized Quicksort.

A Monte Carlo algorithm is a randomized algorithm which may err, depending on its
random choices. An example is the Max2Cut algorithm from the previous section.

For decision problems (which output either 0 or 1), there are three kinds of Monte Carlo
algorithms:

1. Two-sided error: May err on any input.

2. One-sided error, false negatives: May err only on 1-inputs. I.e., the algorithm
may output 0 (negative), if the true result is 1 (positive). This means, if the
algorithm outputs 1, then we know the answer is correct.

3. One-sided error, false positives: May err only on 0-inputs.

For example, every decision problem in NP has a randomized Monte Carlo algorithm
with one-sided error: A nondeterministic algorithm can be turned into a polynomial time
“randomized” algorithm with one-sided error, false negatives. Consider for example the
Hamiltonian Path problem, in which we want to find out whether a given graph G
(with n vertices) has a Hamiltonian path. A randomized algorithm could just randomly
generate one of the n! permutations, π, and then verify (in polynomial time) whether
π corresponds to a Hamiltonian path in G. If yes, the algorithm accepts, otherwise it
rejects.

If the algorithm accepts, then it must have guessed one of the right permutations, and
its output is correct. On the other hand, if the algorithm rejects, this only proves
that the permutation the algorithm picked does not correspond to a Hamiltonian path.
Therefore, the algorithm may err, but only with false negatives. Moreover, the error
probability is bounded: If the graph has a Hamiltonian path, the probability that the
algorithm finds one is at least 1/n!.
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In general, NP is exactly the class of decision problems for which there is a randomized
Monte Carlo algorithm that solves that problem in polynomial time with one-sided
(false-negatives) error, and error probability less than 1.

9.2 Probabilistic Turing Machines

See Section 1.5.1. in the textbook.

9.3 Complexity Classes

See Section 1.5.2 in the textbook.

Denote by RP(ε(n)) and BPP(ε(n)) the class of languages L that have a polynomial
time algorithm A, such that for any input of length n the error probability is at most
ε(n). In case of RP(ε(n)) the algorithm has a one-sided (false-negatives) error, in the
case of BPP(ε(n)), the error can be two-sided. Similarly, let ZPP(ε(n)) be the class of
languages that have a polynomial time algorithm that either accepts, rejects, or returns
“?”. Unless the algorithm returns “?”, the answer is always correct, and the probability
that A returns “?” is at most ε(n).

Then RP = RP(1/2), BPP = BPP(1/4), and ZPP = ZPP(1/2). Moreover,

NP =
⋃

ε(n)<1

RP
(
ε(n)

)
and PP =

⋃
ε(n)<1/2

BPP
(
ε(n)

)

9.4 Amplifying Failure and Error Probabilities

Theorem 9.1. For any two polynomials p and q,

RP = RP(1− 1/p(n)) = RP(1/2q(n)).

Proof. It suffices to prove that RP(1− 1/p(n)) ⊆ RP(1/2q(n)). Let L ∈ RP(1− 1/p(n))
and let A be an algorithm with one-sided error probability at most 1− 1/p(n). For an
input x of length n, we can simulate A t(n) times using independent coin flips. As soon
as A accepts, we accept. If A rejects the input every time, we reject as well.

44



Lecture 10, 11.02.2013

Let t(n) = d(ln 2) · p(n) · q(n)e. If x 6∈ L, then A rejects every time, so we will reject in
the end. If x ∈ L, then the probability that A rejects every time is

(1− 1/p(n))d(ln 2)·p(n)·q(n)e ≤ e−(ln 2)q(n) = 2−q(n).

Theorem 9.2. For any two polynomials p and q,

ZPP = ZPP
(
1− 1/p(n)

)
= ZPP

(
2−q(n)

)
.

We leave the proof as an exercise.

We can use Chernoff Bounds to show that the error probability of polynomial time
algorithms with two-sided error can be amplified from “polynomially close to 1/2” to
“exponentially small”.

Theorem 9.3. For any two constants c, d > 0,

BPP
(
1/2− 1/nc

)
= BPP

(
1/2n

d
)

= BPP.

Proof. It suffices to show BPP
(
1/2− nc

)
⊆ BPP

(
1/2n

d
)

. Let L ∈ BPP
(
ε(n)

)
and let A

be a polynomial time algorithm for L with error probability at most ε(n) ≤ 1/2− 1/nc.

Now consider an algorithm B that works on input x as follows: B simulates t(n) runs
of A on the input x, using independent random bits for each simulation. Then B makes
a majority decision, i.e., it returns the same answer as the majority of the outcomes of
A. (Ties can be broken arbitrarily.)

Consider an input x of length n and let t := t(n) and let s := s(x) be the probability
that A gives the correct answer for input x. Then

s ≥ 1− ε(n) ≥ 1

2
+

1

nc
.

Let Xi be the indicator random variable, where Xi = 1 if and only if the i-th run of
A returns the correct result, and let X = X1 + · · · + Xt. Then the random variables
X1, . . . , Xt are independent and E[Xi] = Prob(Xi = 1) = s for all 1 ≤ i ≤ t. For
µ = E[X] = s · t, we will apply the Chernoff Bound from Theorem 8.5,

Prob(X ≤ (1− δ)µ) ≤ e−µδ
2/2. (9.1)
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We need to bring “Prob(X ≤ t/2)” in the required form:

Prob(X ≤ t/2) = Prob(X ≤ µ · 1/(2s)) = Prob
(
X ≤ µ(1− (1− 1/(2s)))

)
Thus, for δ = (1− 1/(2s)), inequality (9.1) yields

Prob(X ≤ t/2) ≤ e−µδ
2/2 = e−t·s·δ

2/2

By the definition of δ,
s · δ2/2 = s(1− 1/(2s))2/2.

Since this term increases with s and s ≥ 1/2 + 1/nc, the value of s · δ2/2 is minimal for
s = 1/2 + 1/nc. For this value of s we obtain

δ = 1− 1/(2s) = 1− 1

1 + 2/nc
=

2/nc

1 + 2/nc
=

2

nc + 2

and thus

s · δ2/2 ≥
(

1

2
+

1

nc

)
2

(nc + 2)2
≥ 1

2n2c
.

Hence, for t = t(n) =
⌈
2(ln 2) · n2c+d

⌉
, we obtain

Prob(X ≤ t/2) ≤ exp

(
−t

2n2c

)
≤ exp

(
−(ln 2) · nd

)
= 2−n

d

.

Thus, for this choice of t(n), the error probability of our algorithm B is at most 1/2n
d
.

Moreover, since t(n) is a polynomial, the running time of algorithm B is polynomial.
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9.5 Relations Between Complexity Classes for Decision Problems

Problems in PP are not in general efficiently computable, or at least we don’t know
that all problems in PP have efficient randomized algorithms with acceptable error
probabilities. In fact, NP is a subset of PP, so PP contains NP-complete problems.

Theorem 9.4. NP ⊆ PP

Proof. Let L ∈ NP. Then there exists a polynomial time randomized Turing machine
M , such that if x ∈ L, then M accepts with probability larger than 0, and if x 6∈ L,
then M rejects with probability 1. Recall that in each step, a Turing machine can either
apply transition function δ0 or δ1, so it can use exactly one random bit per step. Let
tM(n) be the worst-case the running time of M , i.e., tM(n) = nO(1).

We construct a PP-algorithm B for L. Let x be some input of length n, and t = tM(n).
First, B chooses an integer z ∈ {0, . . . , 2t+1−1} uniformly at random, by sampling t+ 1
random bits. If 0 ≤ z ≤ 2t, then B simulates M and returns M ’s answer. Otherwise, B
accepts.

We prove that B has an error probability of less than 1/2. First consider the case x 6∈ L.
If B simulates M , then M rejects and so B rejects. If B does not simulate M , then B
accepts. So B is correct if and only if it simulates M , i.e., if z ≤ 2t. This happens with
probability

Prob
(
z ≤ 2t

)
=

2t + 1

2t+1
=

1

2
+

1

2t+1
> 1/2.

Now suppose x ∈ L. Then B accepts if z > 2t, or if z ≤ 2t and M accepts. Recall that
M uses at most t random bits. For at least one combination of these random bits, M has
to accept. There are at most 2t possible bit combinations, so Prob(M accepts) ≥ 1/2t.
We obtain

Prob(B accepts) = Prob
(
z > 2t

)
+ Prob

(
z ≤ 2t ∧M accepts

)
≥ 1

2
− 1

2t+1
+

(
1

2
+

1

2t+1

)
1

2t

=
1

2
− 1

2t+1
+

1

2t+1
+

1

22t+1

>
1

2
.
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Recall that ZPP algorithms cannot err, but they can fail, and return no answer. We will
now show that problems in ZPP have efficient Las Vegas algorithms.

Theorem 9.5. If L ∈ ZPP, then and only then there exists a randomized algorithm A
for L that has expected polynomial running time and always outputs the correct answer.

Proof. “⇐”: Suppose A is an algorithm that solves L without failure or error in ex-
pected running time tA(n), where tA(n) ≤ p(n) for some polynomial p. Let A′ be an
algorithm that for any input x simulates A on x until A halts or until 2 · p(n) steps have
been simulated. If A halts within 2p(n) steps, A′ returns the same result as A; otherwise
A′ returns “?”. Now consider an arbitrary input x of length n. If the simulation of A on
x halts within 2p(n) steps, then A′ returns the correct answer, and otherwise A′ fails.
Thus, we have to prove that the probability that A needs more than 2p(n) steps is at
most 1/2. Let Y be the random variable that is the running time of A for the input x.
We know that E[Y ] ≤ p(n). By Markov Inequality (Theorem 8.1),

Prob
(
Y ≥ 2p(n)

)
≤ E[Y ]

2p(n)
≤ p(n)

2p(n)
=

1

2
.

Hence, the probability that A′ fails is at most 1/2.

“⇒”: Let L ∈ ZPP and B an algorithm that solves L in worst-case running time
tB(n) ≤ r(n) for some polynomial r, and that fails with probability at most 1/2. Let
B′ be the algorithm which, on the input x, runs B on x repeatedly until B provides an
answer “yes” or “no”. If B returns an answer, then B′ returns the same answer. Clearly,
B′ always outputs the correct answer, so it suffices to show that E[tB′(x)] = nO(1), where
n is the length of the input x. For each run of B, the probability that B does not fail
is q ≥ 1/2. Hence, the number of repetitions, X, is a geometrically distributed random
variable with parameter q. Thus, E[X] = 1/q ≤ 2. Hence, the expected running time
of B′ on input x is

E[t′B(x)] = E[X · tB′(n)] ≤ E[X · r(n)] = E[X] · r(n) ≤ 2 · r(n).

Theorem 9.6. ZPP ⊆ RP

Proof. Let L ⊆ Σ∗ be a language in ZPP and let A be a ZPP-algorithm for L. Then
A halts on any input in polynomial time. With probability at most 1/2 it fails (i.e.,
outputs “?”), but if it does not fail, then its answer (accept or reject) is correct.
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Prob. accept x ∈ L x 6∈ L
A ≥ 1/2 0
A′ 1 ≤ 1/2

Figure 9.1: Error modes for an RP algorithm A and a co-RP algorithm A′.

We construct an RP-algorithm A′. A′ simulates A on the input x, and if A outputs “?”,
then A′ rejects. Then clearly, A′ also has polynomial running time.

If x 6∈ L, then A either rejects or fails. In either case, A′ rejects, so with probability 1
the result is correct. If x ∈ L, then A accepts with probability at least 1/2 and otherwise
fails. If A accepts, then A′ gives the correct answer, otherwise it errs. Hence, A′ errs
with probability at most 1/2. Moreover, if it errs, it rejects, so it can only give false
negatives. It follows that A′ is an RP-algorithm for L.

Theorem 9.7. RP ∩ co-RP ⊆ ZPP.

Proof. Let L ⊆ Σ∗ be a language in RP ∩ co-RP. Let A and A′ be RP and co-RP-
algorithms for L, respectively. I.e., both algorithms have polynomial worst-case running
times, both have a one-sided error probability of at most 1/2, and all errors are false-
negatives in the case of A and false-positives in the case of A′.

Here is a ZPP-algorithm B that decides L for the input x: Run first A and then A′ on
x. If both, A and A′, give the same answer, return that answer. Otherwise, output “?”.

Clearly, B has polynomial running time. Hence, it suffices to show that B makes no
error, and that the probability that B outputs “?” is at most 1/2.

If B accepts, then this means that A and A′ accepted x and thus the answer is correct,
as A cannot give a false-positive answer. Similarly, if B rejects, then A and A′ rejected
x, which is correct because A′ cannot give a false-negative answer. This implies that if
B accepts or rejects, its answer is correct.

It remains to bound the probability that B outputs “?”. Let A(x), A′(x), and B(x)
denote the (random) outputs of a run of A, A′, and B, respectively. First note that it
is not possible that A accepts and A′ rejects, as this would imply that either A gives
a false-positive or A′ a false-negative answer, both of which are impossible. Hence, B
outputs “?” if and only if A rejects and A′ accepts.

Note that if an event E implies some other event, D (ie., E ⊆ D), then Prob(E) ≤
Prob(D). Since the event “B(x) = “?”” implies the events “A(x) = 0” and “A′(x) = 1”
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accepts, we have

Prob(B(x) = “?”) ≤ Prob(A(x) = 0) and Prob(B(x) = “?”) ≤ Prob(A(x) = 1)

If x ∈ L, then Prob(A(x) = 0) ≤ 1/2 and Prob(A′(x) = 1) = 1 (as A′ cannot give a false-
negative answer). Similarly, if x 6∈ L, then Prob(A(x) = 0) = 1 and Prob(A′(x) = 1) ≤
1/2. Hence, in either case Prob(B(x) = “?”) ≤ 1/2.

Corollary 9.8. ZPP = RP ∩ co-RP.

Corollary 9.9. The following inclusions hold, where A→ B means “A ⊆ B”:

P ZPP = RP ∩ co-RP

RP

co-RP

BPP

NP

co-NP

PP
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10 Chebyshev’s Inequality and Two-Point Sampling

Recall that we can use Chernoff Bounds to bound the probability that a random variable
X deviates from its expectation, if X is the sum of independent Bernoulli trials. In many
cases, we do not have complete independence among Bernoulli trials. On the other hand,
Markov Inequality makes no such assumptions on the distribution of X. However, the
probability bounds we can achieve with Markov Inequality are often too weak.

10.1 Chebyshev’s Inequality

We now present another tail inequality that is also useful for the sum of possion trials,
but doesn’t require that all trials are independent. In fact, we only need to be able to
bound the variance of X, which we can often do effectively, if X is the sum of pairwise
independent Bernoulli trials.

Definition 10.1. Let X be a random variable, and µ := E[X]. Then the variance of
X is

Var [X] := E[(X − µ)2] (= E[X2]− µ2).

For example, let X : Ω → {0, 1} be an indicator random variable, where p =
Prob(X = 1). Then X2 = X, so E[X2] = E[X] = p, and thus

Var [X] = E[X2]− E[X]2 = E[X]− E[X]2 = E[X](1− E[X]) = p(1− p).

Theorem 10.2 (Chebyshev’s Inequality). Let X be a random variable. Then for any
t ∈ R≥0

Prob(|X − E[X]| ≥ t) ≤ Var [X]

t2
.

Proof. Let Y := (X − E[X])2. Then E[Y ] = Var [X]. Thus, by Markov inequality

Prob(|X − E[X]| ≥ t) = Prob
(
(X − E[X])2 ≥ t2

)
= Prob

(
Y ≥ t2

)
≤ E[Y ]

t2
=

Var [X]

t2
.
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One of the reasons why Chebyshev’s Inequality is useful for algorithmic application is
that Variance is linear for pairwise independent random variables.

Definition 10.3. The random variables X1, . . . , Xk are pairwise independent, if for any
1 ≤ i < j ≤ k the random variables Xi and Xj are independent.

Say, X1, . . . , Xk are indicator random variables, indicating whether the run of the i-
th run of an algorithm was successful or not. If we want that all random variables
X1, . . . , Xk are independent, then we need to use independent random bits for each run
of the algorithm. This may require a lot of randomness. In the next section we will
see that with very little randomness we can ensure that X1, . . . , Xk are at least pairwise
independent. In order to apply Chebyshev’s Inequality, we may need to bound the
variance of the sum X1 + · · ·+Xk. The next lemma implies that this is easy for pairwise
independent random variables.

Lemma 10.4. Let X1, . . . , Xk be pairwise independent random variables and X =∑k
i=1 Xi. Then Var [X] =

∑k
i=1 Var [Xi].

Proof. By induction on k. For k = 1 there is nothing to show. Now assume k ≥ 2.

Let Y = X1 + · · ·+Xk−1. Then by the inductive hypothesis, Var [Y ] =
∑

1≤i<k Var [Xi].

Then∑
1≤i≤k

Var [Xi] = Var [Y ] + Var [Xk] = E[Y 2] + E[Xk
2]− E[Y ]2 − E[Xk]

2. (10.1)

Moreover,

Var [X] = Var [Y +Xk]

= E[(Y +Xk)
2]− (E[Y +Xk])

2

= E[Y 2 + 2Y Xk +Xk
2]− E[Y ]2 − 2E[Y ]E[Xk]− E[Xk]

2

= E[Y 2] + E[Xk
2]− E[Y ]2 − E[Xk]

2 − 2E[Y ]E[Xk] + 2E[Y Xk]

(10.1)
=

∑
1≤i≤k

Var [Xi] + 2(E[Y Xk]− E[Y ]E[Xk]).

So it suffices to prove that E[Y ] · E[Xk] = E[Y Xk].
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By linearity of expectation

E[Y ] · E[Xk] = E[Xk] ·
∑

1≤i<k

E[Xi]

=

(∑
1≤i<k

E[Xk] · E[Xi]

)
pairw. indep.

=

(∑
1≤i<k

E[Xk ·Xi]

)

= E

[ ∑
1≤i<k

Xk ·Xi

]

= E

[
Xk ·

∑
1≤i<k

Xi

]
= E[Xk · Y ].

10.2 Error-Amplification with Low Randomness

How can we generate pairwise independent random variables with as few random bits
as possible?

Theorem 10.5. Let p be a prime. Then for randomly chosen a, b ∈ {0, . . . , p− 1},
the random variables Xi := (a · i + b) mod p, 0 ≤ i < p, are uniformly distributed and
pairwise independent.

Proof: Recall that Zp = {0, . . . , p− 1}, equipped with addition and multiplication
modulo p, is a finite field. I.e., it is a group with respect to addition and with respect
to multiplication. In the following, let ≡ denote the equivalence relation “modulo p” on
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Z. Thus,

Prob(Xi = yi) =
∑
A∈Zp

Prob(Xi = yi | a = A)] · Prob(a = A)

=
∑
A∈Zp

Prob(Ai+ b ≡ yi)
1

p

=
1

p

∑
A∈Zp

Prob(b ≡ yi − Ai)

=
1

p

∑
A∈Zp

1

p

=
1

p
.

This proves that Xi is uniformly distributed.

It remains to show for any 0 ≤ i < j ≤ p− 1 that the random variables Xi and Xj are
independent. To do so, it suffice to show for any two values yi, yj that

Prob(Xi = yi | Xj = yj) = Prob(Xi = yi).

We have already proved that the right side of the equation is 1/p. Hence, it suffices to
show that

Prob(Xi = yi | Xj = yj) =
1

p
.

Since

Prob(Xi = yi | Xj = yj) =
Prob(Xi = yi ∧Xj = yj)

Prob(Xj = yj)
= p · Prob(Xi = yi ∧Xj = yj),

it suffices to show that Prob(Xi = yi ∧Xj = yj) = 1/p2.

Consider the polynomials f(x) = (ax+ b) mod p, for a, b ∈ Zp. These polynomials have
degree one. Hence, for any i 6= j, if we fix y0 ∈ Zp, and y1 ∈ Zp, then there is exactly one
such polynomial that satisfies f(i) = y0 and f(j) = y1. There are p2 such polynomials,
and so the probability that a randomly chosen polynomial f satisfies this constraint is
1/p2.

We now want to amplify the error probability of an RP-algorithm, without using too
many random bits.
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Algorithm 7: A∗

Input: x ⊆ Σ∗, and an integer 1 ≤ t < p.

1 Randomly pick a, b ∈ Zp.
2 for 0 ≤ i < t do
3 Let ri := a · i+ b

4 Compute A(x, ri) by simulating A

5 if A(x, ri) = 1 then accept

6 end

7 reject

Figure 10.1: Error-amplification with two-point sampling.

Consider an algorithm A for some language L, that has a one-sided (false-negatives)
error probability of at most 1/2. For simplicity reasons, assume that A uses exactly one
random word r ∈ {0, . . . , p− 1} for a run, where p is a prime. For an input x, we define
A(x, r) = 1, if A accepts the input for the random word r, and A(x, r) = 0 if A rejects.
Hence, we know that A has polynomial running time, and

x ∈ L⇒ Probr(A(x, r) = 1) ≥ 1

2
, and

x 6∈ L⇒ Probr(A(x, r) = 0) = 1.

If we repeat the algorithm t times and use independent random choices for every repe-
tition, we can decrease the error probability to 1/2t. However, then we need at least t
random words.

Alternatively, consider the algorithm in Figure 10.1. Clearly, this algorithm needs only
two random words. If x 6∈ L, then A will reject in each run, and thus A∗ rejects, too. It
therefore remains to consider the error probability for the case x ∈ L.

If the numbers ri were chosen independently, then this probability would be at most
1/2t. In our case, these numbers are only pairwise independent. Let Xi be the indicator
variable, where Xi = 1 if and only if A(x, ri) accepts. Since the integers ri are pairwise
independent, so are the random variables Xi. Moreover, all random variables Xi have
the same distribution, i.e.,

Prob(Xi = 1) = Prob(A(x, ri) accepts) = q
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for some parameter q ≥ 1/2. Thus, E[Xi] = q ≥ 1/2, and

Var [Xi] = q(1− q) ≤ 1/4. (10.2)

We let X = X0+· · ·+Xt−1 be the number of runs in which A accepts. Obviously, our new
algorithm A∗ accepts (correctly), iff X ≥ 1. Hence, we have to bound the probability
that X = 0. We know that E[X] = t ·E[Xi] ≥ t/2, and by pairwise independence of the
random variables Xi and (10.2)

Var [X] =
∑

1≤i≤t

Var [Xi] ≤ t/4.

Applying Chebyshev’s inequality, we obtain

Prob(X = 0) ≤ Prob(|X − E[X]| ≥ E[X]) ≤ Var [X]

E[X]2
≤ t/4

(t/2)2
=

1

t
.
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11 Occupancy Problems

Suppose we throw m balls into n bins, and for each ball we choose one bin uniformly at
random, and all random choises are independent. We can ask several natural questions,
e.g.,

1. How large should m be, so that no bin remains empty?

2. What is the maximum load of any bin?

3. What is the probability that one particular bin has a high load?

All these questions are interesting for hashing: Suppose you want to store m keys in a
hash table of size n. Each hash table cell contains a linked list, in which the elements
that are hashed to that cell will be stored. One often assumes that the hash function
maps all keys uniformly at random to the hash table cells. For example, the maximum
load of a bin then corresponds to the maximum length of a linked list and thus to the
maximum lookup time.

11.1 How many balls are needed to cover all bins?

This is also known as the “Coupon’s Collector” problem. Suppose there are n types of
coupons. The coupon’s collector buys coupons until it has at least one coupon of each
type. We assume that each time the collector buys a coupon, its type is determined
uniformly at random and independently from all other coupons. What is the expected
number of coupons the collector buys? This is the same as the expected number of balls
we need to throw in the bins until each bin is covered.

Recall that for two events A,B it holds Prob(A ∪B) ≤ Prob(A) + Prob(B). Hence, for
n events A1, . . . , An we have

Prob

(
n⋃
i=1

Ai

)
≤

n∑
i=1

Prob(Ai).

Let X be the number of balls needed, until all bins are covered. Consider some point in
time when exactly i− 1 bins are covered. Let Xi be the number of balls we need to still
throw into random bins until i bins are covered. Clearly, then X = X1 + · · ·+Xn.
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The probability that a ball is thrown into an empty bin, when i− 1 bins have a ball, is
(n − i + 1)/n. Thus, Xi is geometrically distributed with parameter q = (n − i + 1)/n
and E[Xi] = n/(n− i+ 1). We get

E[X] =
n∑
i=1

E[Xi] =
n∑
i=1

n

n− i+ 1
= n ·

n∑
i=1

1

i
= n ·Hn.

This yields the following theorem.

Theorem 11.1. Let X be the number of balls we need to throw into n bins (chosen
uniformly and independently at random) until all bins have at least one ball. Then

n lnn ≤ E[X] = n ·Hn ≤ n lnn+ n.

So after n lnn+n balls have been thrown into the n bins, we can “expect” that each bin
has a ball. But what if for example we throw in twice that many balls? What can we
say about the probability that each bin has a ball? We could apply Markov Inequality,
but this would give us only a weak bound. Here is a much stronger one.

Theorem 11.2. Let ε ≥ 0 be an arbitrary constant. If (1+ε) ·n lnn balls are distributed
uniformly at random over n bins, then the probability that some bin remains empty is at
most n−ε.

Proof: Consider bin i. The probability that bin i remains empty is at most(
1− 1

n

)(1+ε)·n lnn

≤ e−(1+ε)·lnn = n−(1+ε).

The probability that either bin 1, or bin 2, or . . . , or bin n remains empty is at most
n · n−(1+ε) = n−ε.

11.2 Bounding the Probability for Large Maximum Loads

We now want to determine the load of the fullest bin if the number of balls is equal to
the number of bins. For that (and many other purposes), the following inequalities are
helpful: (n

k

)k
≤
(
n

k

)
≤
(e · n

k

)k
and

(
n

k

)
≤ nk

k!
. (11.1)

58



Lecture 13, 27.02.2013

We consider the case that there are n balls and m = n bins. Let Yi be the number of
balls in the i-th bin. Hence, E[Yi] = 1 for all 1 ≤ i ≤ n. Let Y = max {Yi | 1 ≤ i ≤ n}.
What is the probability, that Y ≥ k?

If Yi ≥ k, then there are k balls that all end up in bin i. There are
(
n
k

)
possibilities to

choose exactly k balls. The probability that all k balls are thrown in bin i is (1/n)k.
Hence,

Prob(Yi ≥ k) ≤
(
n

k

)
·
(

1

n

)k
≤
(e · n

k

)k
·
(

1

n

)k
=
( e
k

)k
.

For example, for n ≥ 16

Prob(Yi ≥ e lnn/ ln lnn) ≤
(
e ln lnn

e lnn

)e lnn/ ln lnn

= exp

(
(ln ln lnn− ln lnn)

e lnn

ln lnn

)
= exp

(
−e lnn+ ln ln lnn

e lnn

ln lnn

)
≤ exp (−e lnn+ .7 lnn) ≤ exp (−2 lnn) =

1

n2
.

We used that for n > ee, i.e., n ≥ 16

e lnn

ln lnn
ln ln lnn ≤ .7 lnn

Thus,

Prob(Y ≥ e lnn/ ln lnn) ≤
∑

1≤i≤n

Prob(Yi ≥ e lnn/ ln lnn) ≤ 1/n.

Theorem 11.3. If n balls are thrown uniformly at random into n bins, then with prob-
ability at least 1− 1/n no bin has e lnn/ ln lnn or more balls.
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12 The Principle of Deferred Decisions

(See also p. 55-56 in the textbook.)

12.1 Example: Solitaire

Consider the following solitaire-game played with a deck of 52 playing cards. The 4 suits
are diamonds (♦), hearts (♥), spades (♠), and clubs (♣). Shuffle the deck of cards, and
then divide it into 4 piles. Each pile is associated with one of the suits (but contains
random cards).

Now we pick a card from the ♦-pile and throw it away. The suit of the card picked,
determines a pile from which we pick the next card, and so on. The game ends, once we
pick a card and the pile associated with that card’s suit is empty. We win the game, if
we can throw away all cards. What is the probability that this happens?

Observation 12.1. The card we hold in hand when the game ends is always a ♦-card.

Proof. For the purpose of a contradiction, assume that the suit of the last card we hold
in hand is not ♦, for example it is ♠. Then the ♠-pile is empty, which means that the
card we hold in hand is the 14th ♠-card. This is a contradiction, because there are only
13 ♠-cards in the deck of 52 cards.

(Note that once 12 ♦ cards have shown, the ♦-pile is empty, because we pick the first
card from that pile. Thus, when we pick the 13-th ♦ card, the game ends.)

By the principle of deferred decision, we can in advance fix the order in which the cards
appear: Fix an arbitrary permutation of cards and then put the first card on top of the
♦-pile, the second card on top of the pile that corresponds to the suit of the first card,
and so on. Thus, for every permutation π of the 52 cards, we can distribute the cards
on the pile in such a way that the cards appear in the order of π (until we cannot pick
up a card anymore). By Observation 12.1, the game ends with empty piles, if and only
if the last card in this permutation is ♦. The probability that we can finish the game is
the same as the probability that the suit of the last card in π is ♦. This probability is
1/4.
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12.2 Example: Stable Marriages

(See also Section 3.5 in the textbook.)

Consider a monogamous, heterosexual society of n men numbered 1, . . . , n and n women
numbered 1, . . . , n. A marriage is a permutation π, and we say that man i is married
to woman π(i). The pairs (i, π(i)) are called couples. Each man and each woman has
a preference list of all possible partners of the opposite sex. Two distinct couples (i, i′)
and (j, j′) are dissatisfied, if i prefers j′ over i′, and j′ prefers i over i′. (I.e., i and j′

would leave their mates because they found “each other”.) A marriage is stable, if there
are are no dissatisfied pairs. The goal is to find a stable marriage for given preference
lists.

The naive approach to solve this problem is to start with an arbitrary matching and
then pick an unsatisfied pair, remarry it, and so on. However, this process may cycle
and never stop. Now consider the proposal-algorithm in Figure 12.1.

Algorithm 8: Proposal Algorithm

1 while there is a man i that is not engaged to any woman do
2 Let Si be the set of women that have not yet rejected man i or split up with i
3 Man i proposes to the most desirable woman j in Si.
4 If j is currently engaged to a man i′ that she prefers over i, then she rejects i
5 Otherwise, she gets engaged with i (after splitting up with the man she is

currently engaged with, if any).
6 end
7 Every engaged pair marries.

Figure 12.1: Computing a Stable Matching.

Proposition 12.2. The resulting matching is stable.

Proof: For the purpose of a contradiction, assume that in the end there are two couples
(A, c) and (B, d) such that A prefers d over c and d prefers A over B. Since A prefers d
over c, he proposes to d before he proposes to c. After that, d will not accept a proposal
from a man worse than A, in particular not a proposal from B.

The worst-case running time of the algorithm is at most quadratic.
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Proposition 12.3. The algorithm terminates after at most n2 − n+ 1 iterations.

Proof: If a set Si is empty, man i has proposed to all women hence all women are
married (a woman gets married when someone proposes to her for the first time, and
from then on she is never unmarried). In an iterations in which we consider man i, the
cardinality of set Si decreases by one. After at most n2 − (n − 1) iterations at least
one set Si is empty, and the algorithm stops because all women (and thus all men) are
married.

Note that the running time can be Ω(n2): Assume that every man has the same prefer-
ence list (1, . . . , n), and every woman has the preference list (1, . . . , n), and the men are
considered in the order 1, . . . , n. When it’s man i’s turn to propose, all men 1, . . . , i− 1
are engaged with women 1, . . . , i − 1. Thus, women 1, . . . , i − 1 will all reject man i’s
proposal and man i gets engaged with woman i. Hence, the total number of iterations
is 1 + 2 + · · ·+ n = n(n+ 1)/2.

Average Case Analysis. We now analyze the running time, when the men’s preference
lists are chosen uniformly at random. The women’s preference lists can be arbitrary (but
must be fixed before the men make up their mind).

We apply the principle of deferred decisions in the following way: We do not pick
the men’s preferences lists in advance, but whenever its man i’s turn to propose, he
picks one woman randomly from Si. Clearly, this leads to exactly the same probability
distribution.

Let Ti be the number of proposals man i makes.

Now assume that the men are amnesiac, so they forget to whom they have already
proposed to, and they pick the women to propose to uniformly at random from all
women. Let T ′i be the number of proposals man i makes in this situation.

Since proposing to the same woman twice will always mean that the second proposal
will be rejected, it follows Prob(T ′i > k) ≥ Prob(Ti > k) for all k. Hence,

E[Ti] =
∑
k≥0

Prob(Ti > k) ≤
∑
k≥0

Prob(T ′i > k) = E[T ′i ].

Whenever a man proposes to an unmarried woman, that woman will accept, and she will
never be single again. Thus, T ′ is bounded by the number of balls we need to throw into
n bins, until all bins are covered. (Throwing ball i in bin j means that man i proposes
to woman j.) We know that the probability that we need more than (1 + ε)n lnn balls
is bounded by n−ε, and that the exepcted number of balls we need is O(n lnn).
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Theorem 12.4. With probability at least 1 − n−ε, the number of iterations is bounded
by (1 + ε)n lnn, and the expected number of iterations is O(n lnn).

64



13 Dictionaries

A dictionary maintains a set S of n keys from some universe U , and possibly with each
key x ∈ S and additional data item Dx. We distinguish static and dynamic dictionaries.

A static dictionary receives the entire set S and builds the dictionary for set S in a
preprocessing phase, so that the search for a key x and the data itemDx can be performed
efficiently. Usually, it supports two operations:

1. Preprocess(S): builds the data structure for set S and the data items Dx, x ∈ S.

2. Find(x): Returns Dx, if x ∈ S, and returns ⊥ if x 6∈ S.

A dynamic dictionary is used when frequent updates are necessary. It supports the
operations

1. Insert(x,Dx): insert the data item Dx and its key x in the dictionary.

2. Delete(x): removed the key x as well as the data item Dx from the dictionary
(and return ⊥ if x 6∈ S).

3. Find(x): Returns Dx, if x ∈ S, and returns ⊥ if x 6∈ S.

In the following we discuss randomized data structures for dynamic and static dictio-
naries. We focus on storing the key from S. It is easy to modify the data structure so
that data items are stored together with the keys.

13.1 Skip Lists

Skip Lists can be used to implement a dynamic dictionary. We assume that the universe,
U , is totally ordered.

A pointer-tower of height h, h ∈ N, is an object that stores an element from U together
with h pointers. We say the i-th pointer in a pointer-tower, is the pointer at level i. A
skip list for a set S = {x1, . . . , xn} ⊆ U of size n is an ordered sequence of n+ 1 pointer-
towers T0, . . . , Tn of heights H0, H1, . . . , Hn, respectively, where H0 = max{H1, . . . , Hn}.
The value H0 is denoted the height of the skip-list. The head tower, T0, does not store
any element, and if x1 < x2 < · · · < xn, then the xi is stored in Ti. The pointer on level
` of tower Ti points to the next pointer-tower in the sequence which has a height of at
least Hi, and to NIL, if no next pointer-tower of height at least Hi exists.
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Figure 13.1: A skip list. The dotted lines indicate pointers that are traversed in a search
for any key x, where 8 < x ≤ 15.

13.1.1 Algorithm

To search for a key x, we first follow the pointers on the highest level, H0, until we find
the pointer-tower T of height H0 that stores the largest value y ≤ x. Then, starting at
pointer-tower T , we continue the traversing the list at height H0 − 1, until we find the
pointer-tower storing the largest element with a value at most x, and so on. Once we
find the largest value x∗ ≤ x in the bottom list (i.e., in all pointer towers), we either
have x∗ = x or x is not stored in the skip list. Note that without any extra “work”, the
search allows us to determine for every height i, 1 ≤ i ≤ H0, the unique pointer-tower
of height at least i which stores the largest value that is no larger than x.

To insert a new key x, we create a new pointer-tower T ∗ of a random height h ≥ 1, where
h is geometrically distributed with parameter 1/2, and store x in it. (I.e., the height
is determined by repeatedly flipping an unbiased coin, and setting h to the number of
flips until head appears for the first time.) Then we search for x in the skip list, and
if x is not already present we just have to insert T ∗ at the right positions in each of
the lists (on every level) i: Let T be the pointer-tower of height at least i which stores
the largest value smaller than x. (Recall that this pointer-tower is obtained during the
search for every height i.) If T ’s pointer at height i points to T ′, then we simply redirect
that pointer to point to T ∗, and set the pointer of T ∗ at height i to T ′.

Deletions can be performed in a similar straight-forward manner.

13.1.2 Analysis

Consider a skip list for n keys.

We first analyse the space requirements. Let Hi denote the height of the i-th element
stored in the skip list. Then Hi is geometrically distributed with parameter 1−q. Recall
that H0 = max{H1, . . . , Hn} is the height of the skip list.
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Since Hi, 1 ≤ i ≤ n, is geometrically distributed (see Example 4.7), we have for any
integer h ∈ N that Prob(Hi > h) = 2−h. Hence, by the union bound the probability that
there exists a tower Ti, 1 ≤ i ≤ n, of height Hi > h is at most n · 2−h. Let ` = dlog ne.
Then

Prob(H0 > `+ c) ≤ n · 2−`−c ≤ n · 2− logn−c = 2−c. (13.1)

Hence, we obtain the following upper bound on the expectation of H0:

E[H0]
Theorem 4.6

=
∑
h≥0

Prob(H0 > h) =
∑

0≤h≤`−1

Prob(H0 > h) +
∑
i≥0

Prob(H0 > `+ i)

(13.1)

≤
∑

0≤h≤`−1

1 +
∑
i≥0

2−i = dlog ne+ 2 (13.2)

Theorem 13.1. The expected number of pointers needed to store in a skip list of n
elements is

2n+ dlog ne+O(1).

Proof. We need to store Hi pointers in the tower Ti, 0 ≤ i ≤ n. For 1 ≤ i ≤ n, Hi is
geometrically distributed with parameter 1/2, so we have E[Hi] = 2. Thus, the theorem
follows from (13.2).

We now analyze the time it takes to search in a skip list. The time for an insertion and
a deletion is asymptotically the same.

Suppose we search for an element x. Let x∗ be the largest value stored in the skip list
that is not larger than x. (I.e., if x is stored in the skip list, then x∗ = x.) The time to
search for x∗ is asymptotically the same as the time to search for x, as the search for x
will at the end find the tower that stores x∗ and reach the bottom of that tower.

Note that each tower that gets visited during the search for element x∗ is reached for
the first time on the highest level of that tower.

We visit all towers found during the search in a reverse order, starting with the tower
that stores x∗. By the principle of deferred decisions (see Chapter 12), we can determine
the random height of a tower when we visit it for the first time during this backward
search.

Suppose during the backward search we reach a tower Ti at level h. Then we know that
hi ≥ h. Given that hi ≥ h, the actual height hi of Ti can be determined by starting at
height h, and then repeatedly flipping an unbiased coin at random until it shows heads,
and for each tails flip adding one to the height. In other words, with probability 1/2,

67



CPSC 522 & 622, Winter 2013 Randomized Algorithms

our backwards search goes “up” one level at the tower Ti, and with probability 1/2 it
goes to a previous tower Tj, j < i, reaching that tower on the same level.

We continue the backwards search until we either reach the “head” tower, T0, or until
we reach height ` = dlog ne, whatever happens first. Let X denote the number of steps
until this happens. Then X is bounded by the number of coin-flips we need until we
see ` times tails (as a tails flip corresponds to going “up” one level in the backwards
search). I.e., X = X1 + · · · + X`, where Xi is the number of coin-flips after i − 1 tails
have been flipped until we see another tails flip. Since E[Xi] = 2 for 1 ≤ i ≤ ` we have
E[X] = 2` = 2dlog ne.
Once we have reached level ` (or tower T0) on our backwards search, the remaining
number of steps until we reach tower T0 is bounded by the number of towers of height
at least `. The probability that a fixed tower Ti, 1 ≤ i ≤ n, has height at least ` is
1/2` ≤ 1/n. Hence, the expected number of towers of height at least ` is at most 1. It
follows that once we have reached level `, the expected remaining number of towers we
visit on the backwards search is at most 1. In addition, the expected remaining number
of steps to reach the highest level of tower T0, i.e., level H0, is at most H0. It follows that
the total number of steps of the backwards search has expectation E[X] + E[H0] + 1.
Since E[X] ≤ 2dlog ne and by (13.2) E[H0] ≤ dlog ne + 2, we obtain that the expected
search time is O(log n).

Theorem 13.2. The expected time needed to perform a search, insert, or delete opera-
tion in a skip list with n elements is O(log n).

13.2 Randomized Hashing Techniques

Throughout this section we assume that |U | = nO(1), i.e., each key can be identified by an
O(log n)-bit string. In order to construct random hash functions, we pick hash functions
randomly from a family of hash functions, called hash family. One may wonder why we
don’t pick a random function from the set of all functions h : U → R. The reason is
that we have to store such a function which would require at least |U | · blog |R|+ 1c bits.
Hence, we restrict ourselves to “small” hash families with good randomness properties.

Definition 13.3. Let H be a hash family with hash functions h : U → R for two finite
sets U and R. Then H is called c-universal, if for all x, x′ ∈ U , x 6= x′, it holds

Probh∈H
(
h(x) = h(x′)

)
≤ c

|R|
.

A 1-universal hash family is simply called universal.
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The probability that two keys have the same hash function value is called collision
probability.

13.3 Randomized Hashing with Chaining

Assume that we have a c-universal hash family H for a constant c. Then it is easy
to implement hashing with chaining in such a way that a Find-operation requires only
constant time in expectation.

Function Preprocess(S,D)

Input: A sequence S of pairs (x1, D1), (x2, D2), . . . , where xi ∈ U and Di is a
data item.

/* Initializes a static dictionary D = (h, L0, . . . , Ln−1). */

1 Let n := |S|
2 Initialize n empty linked lists L0, . . . , Ln−1.
3 Let H be a c-universal hash family U → {0, . . . , n− 1}
4 Pick h ∈ H uniformly at random
5 for i = 1, . . . , n do
6 Insert the pair (xi, Di) into the list Lh(xi) (at the front)
7 end
8 Let D = (h, L0, . . . , Ln−1)

Function Find(x)

Input: A key x ∈ U .
Output: Di if x = xi and (xi, Di) ∈ S; otherwise ⊥.

1 Search for a pair (x, ·) in the list Lh(x)

2 if (xi, Di) with x = xi found then
3 return Di

4 else
5 return ⊥
6 end

Figure 13.2: Implementation of a static dictionary based on Hashing with Chaining

Assuming that a hash function value, i.e., h(x), can be computed in constant time, the
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total time for preprocessing is O(n). What is the search time?

Consider an element x∗. Then x∗ is in list Li, where i = h(x∗). In order to find x∗ we
have to compute h(x∗) and search (at least partly) through list Li. Hence, the time is
bounded by the number of elements in that list, |Li|. Assuming that the hash function
can be evaluated in constant time, the time for Find(x∗) is O(|Li|).
This is a random variable, whose expectation we can bound as follows. For x ∈ S−{x∗}
let Yx = 1 if h(x) = i, and Yx = 0, otherwise. Hence,

E[Yx] = Prob(Yx = 1) = Prob(h(x) = h(x∗)) ≤ c

n
.

It follows
E[|Li|] =

∑
x∈S

E[Yx] ≤ c.

Thus, the expected time for Find(x∗) is O(1 + c) in addition to the time to evaluate
h. Hence, if h can be evaluated in constant time, and if c = O(1), then we obtain a
constant upper bound for the expected Find-time.

A 2-Universal Hash Family. Let U = {0, . . . , u− 1} and R = {0, . . . , r − 1} for r ≤ u.
Fix a prime p, p ≥ u, and let ha : U → R, ha(x) =

(
(a · x) mod p

)
mod r, and Hp,r =

{ha | a ∈ {0, . . . , p− 1}}.
Then for x, x′ ∈ U , x 6= x′, and d = x− x′ 6= 0, it holds

ha(x) = ha(x
′)⇔

(
(ax) mod p

)
mod r =

(
(ax′) mod p

)
mod r

⇔
(
(ax) mod p

)
−
(
(ax′) mod p

)
≡ 0 (mod r)

⇔ (a · d) mod p ≡ 0 (mod r).

Let k = dp/re. Thus, there are at most k multiples of r in {0, . . . , p− 1}. Since
(a · d) mod p is uniformly distributed over {0, . . . , p− 1} for a randomly chosen a ∈
{0, . . . , p− 1}, it follows that

Prob(ha(x) = ha(x
′)) ≤ k

p
=
dp/re
p
≤ 1

r
+

1

p
≤ 2

r
.

We have just proved the following theorem.

Theorem 13.4. The hash family Hp,r is 2-universal.
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Note that by our assumption that |U | = nO(1) we need only O(log n) bits to store a hash
function ha ∈ Hp,r. (We only have to store the integer a ∈ {0, . . . , p− 1}.) Assuming
that arithmetic over integers in U is also possible in constant time with constant expected
time for the Find operation. If pointers require O(log n) bits and data items need d bits,
we obtain a dynamic dictionary with O(n log n + dn) space, linear preprocessing time
and constant expected time for a search operation.

13.4 Perfect Hashing

Often, the efficiency of Find is much more important than the preprocessing time. In
this section we discuss a static dictionary data structure, where the time for Find is
constant in the worst-case. For that we are willing to sacrifice the linear worst-case time
for preprocessing. However, we can ensure that preprocessing has expected linear time,
while the space bound remains O(n log n+ nd).

Definition 13.5. A function h : U → {0, . . . ,m− 1} is a perfect hash function (PHF)
for an n-element set S ⊆ U , if h is injective on S. A perfect hash function is a minimal
perfect hash function (MPHF), if m = O(n).

Remark 13.6. In literature, sometimes the definition of minimality requires m = n
instead of m = O(n).

Assume we know how to construct a minimal perfect hash function h : U → R for an
n-element set S ⊆ U , such that h can be evaluated in constant time. Then we can store
each pair (x,Dx), x ∈ S, in a table T [0, . . . ,m−1] at position h(x). This way, we obtain
a dictionary with constant lookup-time, and space O(n log n+nd+ log |H|), where H is
the family from which we have chosen h. Our goal is to have |H| = 2O(n logn), so that the
space for storing a hash function is not asymptotically larger than the space for storing
the n keys.

In the following we assume that Hm is a c-universal hash family U → {0, . . . ,m− 1}
for some constant c, and m ≥ n is chosen appropriately. Let D =
{(d1, . . . , dm) | di ∈ {0, . . . ,m− 1}} = {0, . . . ,m− 1}m. For f, g ∈ Hm and d ∈ D,
let

hf,g,d : U → {0, . . . ,m− 1}, x 7→
(
f(x) + dg(x)

)
mod m.

The hash family Fm,n consists of the hash functions hf,g,d with f, g ∈ Hm and d ∈ D =
{0, . . . ,m− 1}m.
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Algorithm 9: PerfectHash

Input: An n-element set S ⊆ U
Output: A function hf,g,d ∈ Fm,n for m = O(n) that is perfect for S.

1 Let m = 5 · n.

2 repeat
3 Pick f ∈ Hm and g ∈ Hm uniformly at random.

4 Let Bi = {x ∈ S | g(x) = i}, for 0 ≤ i < m, bi = |Bi|, and b =
∑

0≤i<m
bi>1

b2
i

5 until b ≤ n and f is injective on each Bi, 0 ≤ i < m

6 Sort the sets Bi according to their size, i.e., find π s.t. bπ(0) ≥ · · · ≥ bπ(m−1).

7 Let d0 = · · · = dm−1 = 0.

8 for 0 < i < m do
9 repeat

10 Pick di uniformly at random from {0, . . . ,m− 1}.
11 until hf,g,d is injective on Bπ(0) ∪ · · · ∪Bπ(i)

12 end

13 return hf,g,d

Figure 13.3: An Algorithm to compute a perfect hash function.

How much space do we need to describe a hash function h ∈ Fm,n? Clearly, O(log n)
bits suffice for f and g, if |U | = nO(1). The vector d consists of m entries with O(logm)
bits each. So if m = O(n), then the space for d is O(n log n). In order to simplify
calculations, we assume in the following that c = 2, i.e., Hm is a 2-universal hash family.

Figure 13.3 (on p. 72) depicts an algorithm that for a given set S ⊆ U of cardinality
n computes a perfect hash function hf,g,d ∈ Fm,n. If the algorithm terminates, then
the second repeat-until loop guarantees that hf,g,d is injective on Bπ(0) ∪ · · · ∪ Bπ(m−1),
i.e., on the entire set S of keys. Hence, the algorithm returns a minimal perfect hash
function.

So we have to find out whether it terminates at all, and if so, how long it takes.

First note that the sorting in Line 6 takes only O(m) = O(n) time if we use for example
Bucket sort. In the following lemmas we show that each of the two repeat-until loops
has a “success” probability that is constant and larger than 0. Hence, each loop will be
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repeated a constant number of times in expectation.

Lemma 13.7. For m = 5n and f, g ∈ Hm chosen at random, let Bi, bi, and b as in the
algorithm in Figure 13.3. Consider the following events.

A:
∑

0≤i<m
bi>1

b2
i ≤ n.

B: f is injective on all Bi.

Then Prob(A ∧B) ≥ 3/25.

Proof: We first bound the probability of the event Ā. If bi > 1, then b2
i ≤ 2bi(bi − 1).

Clearly, two keys x and x′ collide under the hash function g, if and only if there exists
a value i, 0 ≤ i < m, such that x, x′ ∈ Bi. Thus,

bi(bi − 1) = |
{

(x, x′) ∈ S2
∣∣ x 6= x′ ∧ g(x) = g(x′) = i

}
.

For two keys x, x′ ∈ S let Yx,x′ be the indicator variable with value 1 iff x 6= x′ and
g(x) = g(x′). Since g : U → {0, . . . ,m − 1} is chosen at random from a c-universal
hash family, the event “g(x) = g(x′)” occurs with probability at most c/m. Hence,
E[Yx,x′ ] ≤ c/m. It follows that∑

0≤i<m

bi(bi − 1) =
∑
x,x′∈S

Yx,x′ . ≤
∑
x,x′∈S

c

m
=
c · n(n− 1)

m
≤ 2 · n

5
.

By Markov Inequality,

Prob
(
A
)

= Prob

( ∑
0≤i<m

bi(bi − 1) > n/2

)
<

2 · n
5
· 1

n/2
=

4

5
.

Now we prove a lower bound for the conditional probability of event B, given that A
occurs. Consider Bi for some value 0 ≤ i < m. The probability that f is not injective
on Bi is

Prob(∃x, x′ ∈ Bi, x 6= x′ : f(x) = f(x′)) ≤
∑

x 6=x′∈Bi

Prob(f(x) = f(x′))

≤

{
b2
i · cm if bi > 1

0 otherwise.
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Hence,

Prob
(
B
)
≤ c

m

∑
0≤i<m
bi>1

b2
i

Given A, we obtain

Prob
(
B|A

)
≤ c

m
· n ≤ 2

5
.

Thus,

Prob(A ∧B) = Prob(A) · Prob(B|A)

=
(
1− Prob

(
Ā
))(

1− Prob
(
B̄|A

))
≥ 3

5
· 1

5
=

3

25
.

Lemma 13.8. Assume that f is injective on all Bi, 0 ≤ i < m, and that
∑
b2
i < n, where

the sum is taken over 0 ≤ i < m, where bi > 1. If hf,g,d is injective on Bπ(0)∪· · ·∪Bπ(i−1),
then for a randomly chosen dπ(i), the probability that hf,g,d is injective on Bπ(0)∪· · ·∪Bπ(i)

is at least 4/5.

Proof: Assume w.l.o.g. that π = id, i.e., π(j) = j for 0 ≤ j < m. Hence, b0 ≥ · · · ≥
bm−1. Further, let hf,g,d be injective on B0 ∪ · · · ∪Bi−1. We consider Bi.

First consider the case that bi = 1. In this case there is only one element x ∈ Bi. Thus,
if we pick a random value di, only the hash function value hf,g,d(x) gets changed. The
probability that hf,g,d(x) is different from all n− 1 other hash function values hf,g,d(x

′),
x′ ∈ S − {x} is

1− n− 1

m
≥ 1− n

5n
=

4

5
.

Now assume that bi > 1. We say that a set Bj, j 6= i, gets “invalidated” if an element
from Bi collides with an element in Bj, i.e., if there exist x ∈ Bi and x′ ∈ Bj such that
hf,g,d(x) = hf,g,d(x

′), where di is chosen at random. Consider each element x ∈ Bi. The
probability that one particular such element x ∈ Bi collides with one of the elements in
Bj for a randomly chosen di is |Bj|/m. Hence, the total expected number of elements
that get invalidated in sets Bj, j 6= i, |Bj| > 1, is at most∑

x∈Bi

∑
0≤j<i
bj>1

|Bj|2

m
< |Bi|

n

m
≤ |Bi|

5
.
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Hence, the probability that at least |Bi| elements get invalidated is at most 1/5 by
Markov Inequality. But if less than |Bi| elements get invalidated, then none of the sets
B0, . . . , Bi−1 can get invalidated, because each of them has cardinality at least |Bi|. And
in this case hf,g,d is injective on B0 ∪ · · · ∪Bi.

By Lemma 13.7, the first repeat-until loop of algorithm PerfectHash has a probability of
at least 3/25 to terminate after each iteration. Hence, the expected number of iterations
of that loop is at most 25/3. Similarly, by Lemma 13.8, the second repeat-until loop will
be repeated at most 5/4 times on average. It is not hard to see that every other step of
the algorithm can be implemented in such a way that it has running time O(n). Hence,
we have derived the following theorem.

Theorem 13.9. The algorithm PerfectHash computes an MPHF in expected time O(n).

Remark 13.10. The algorithm can be optimized in several ways. In fact, if n is a prime
power, then a very similar algorithm can be used to construct a perfect hash function
hf,g,d with range {0, . . . , n− 1} (i.e., n = m), and which can be stored using (2+ε)n log n
bits for an arbitrary small constant ε > 0. Moreover, the algorithm can be modified such
that also insertions and deletions are possible in expected constant time.

13.5 Cuckoo Hashing

Cuckoo Hashing is a dynamic dictionary data structure that allows look-ups of keys in
constant worst-case time, and insertion and deletion in expected constant time. The
space requirements are linear in the number of keys.

The main idea of Cuckoo Hashing is to use two hash tables and two hash functions
instead of one, and to store each element in one of the hash tables, in a position identified
by the corresponding hash function. Similar to the 2-choices balls-into-bins algorithm,
multiple choices lead to good performance.

Let m = (1 + ε)n, for some constant ε > 0. We use two hash tables T0[0 . . .m− 1] and
T1[0 . . .m−1]. Then we choose two random hash functions h0, h1 : U → {0, . . . ,m− 1}.
We assume for now that h0 and h1 map all keys uniformly at random to the range, i.e.,
the random variables h0(x1), . . . , h0(xn), h1(x1), . . . , h1(xn) are uniformly distributed and
independent, for any set S = {x1, . . . , xn} of keys stored in the dictionary. Note that
this is not a realistic assumption, but there are randomized techniques to achieve this
(that we cannot discuss in this lecture).
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Function RecIns(x, i, ctr)

Input: x ∈ U , i ∈ {0, 1}, ctr ∈ N.
1 if ctr > threshold then return False

2 y := Ti[hi(x)]
3 Ti[hi(x)] := x
4 if y 6= ⊥ then
5 RecIns(y, (i+ 1) mod 2, ctr + 1)
6 end
7

Function Insert(x)

Input: x ∈ U .
1 if ¬ RecIns(x, 0, 0) then
2 Rehash()

3 end

Figure 13.4: Cuckoo Hashing — The Insertion Procedure

In order to insert a key in the dictionary, we first insert it in the first hash table at
T0[h0(x)]. If that hash table cell occupies another key, say x′, remove that key before
inserting x. We then re-insert the removed key, x′, in the second hash table at T1[h1(x′)].
This may require to remove a key x′′ from that hash table cell that then is re-inserted
in the first hash table, and so on.

It is not hard to see that for “bad” hash functions h0, h1, this procedure may cycle and
never come to an end. Therefore, we keep track of the number of insertion attempts.
Once too many insertion (i.e., more than threshold) attempts have been made, we
choose a new hash function pair (h0, h1) and rehash everything, i.e., we collect all keys
stored in the hash tables, and reinsert them into empty hash tables using the new
hash functions. See Figure 13.4 for the insertion procedure; the implementation of the
Rehash() procedure is obvious and omitted from the code.

In order to find a key x, we simply have to check both hash table cells Ti[hi(x)] for
i = 0, 1.

The Cuckoo-Graph

Let S be a set of keys and V0, V1 be sets of m vertices, each. Fix 2 hash functions
h0 : U → V0, h1 : U → V1. For x ∈ S, let e(x) be the edge {h0(x), h1(x)}. The cuckoo-
graph induced by S, h0, h1 is a multi-graph (i.e., a graph that may have multiple edges
between the same vertex pairs) G(S;h0, h1) = (V0 ∪ V1, E), where E is the multi-set
{e(x) | x ∈ S}.
In the following let m = c · n for c = 1 + ε, ε > 0. A path between two vertices u and
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v is edge-distinct, if it contains each edge at most once. (Note that the length of a path
is the number of its edges.)

Lemma 13.11. Let G = G(S;h0, h1) be the cuckoo-graph for two random functions
h0, h1. Then for all u, v ∈ V0, V1 and all ` ∈ N,

Prob(there is an edge-distinct path of length ` between u and v) ≤ 1

m · c`
.

Proof. W.l.o.g. let u ∈ V1. For a path (u = u1, . . . , u`+1 = v) the vertex ui is in V1 if
and only if i is odd.

For fixed u1, . . . , u`+1 and fixed x1, . . . , x`, the event “e(xi) = {ui, ui+1}” occurs if and
only if h0(xi) = ui and h1(xi) = ui+1 in the case that i is even, and h1(xi) = ui and
h0(xi) = ui+1 in the case i is odd. Hence, the event has probability 1/m2. If the path is
edge-distinct, all events “e(xi) = {ui, ui+1}” are independent, and thus in this case

Prob(∀1 ≤ i < ` : e(xi) = {ui, ui+1}) =
1

m2`
.

There are at most m`−1 possibilities of choosing the vertices u2, . . . , u`, ui ∈ V0 if i is
even and ui ∈ V1 if i is odd. Moreover, there are at most n` possibilities of choosing the
keys x1, . . . , x` ∈ S. Hence,

Prob(∃u2, . . . , u`, x1, . . . , x` : ∀1 ≤ i ≤ ` : e(xi) = {ui, ui+1})

≤ n` ·m`−1

m2`
=

n`

m`+1
≤ 1

m · c`

Now let Xu be the length of the longest edge-distinct path leaving u, i.e.,

Xu = max
v
{` | there is an edge-distinct path of length ` between u and v}.

Lemma 13.12. E[Xu] = O(1).

Proof. By Lemma 13.11, for any `, the probability that there exists a vertex v and an
edge-distinct path of length exactly ` between u and v is at most m/(m · c`) = 1/c`.
(Note that given u and `, there are m choices for v: If ` is even, then v is from the same
set among V0 and V1 as u, otherwise it is from the other set.) Hence,

E[Xu] =
∑
`≥1

Prob(Xu ≥ `) ≤
∞∑
`=1

1

c`
= −1 +

∞∑
`=0

1

c`
= −1 +

1

1− 1/c
=

1

c− 1
=

1

ε

77



CPSC 522 & 622, Winter 2013 Randomized Algorithms

Now suppose the keys in S are inserted in an arbitrary order. For each key, the expected
length of the longest edge-distinct path it belongs to is O(1). Hence, the expected
insertion time for a fixed key is O(1 +E[Xu]) plus the time for rehashes that may occur
during the insertion of that key. In the following we bound the probability that such
rehashes occur.

A Simple Rehash Analysis

Let x be a key and h0(x) = u and h1(x) = v. If inserting x causes a rehash, then either
the edge {u, v} is part of a cycle, or it is on an edge-distinct path of length at least
threshold. If threshold = d · log n, then by Lemma 13.11, the probability that x is on an
edge-distinct path of that length is at most (recall that there are m possible endpoints
of such a path)

1

cd logn
=

1

nd
. (13.3)

If the edge {u, v} is part of a cycle, then there is an edge-distinct path from v to u, that
uses at least one edge, and {u, v} is not one of the edges on the path. The probability
that such a path exists is bounded by∑

`≥1

1

m · c`
=

1

c ·m
·
∑
`≥0

1

c`
=

1

c ·m
· 1

1− 1/c
=

1

c ·m
· c

c− 1
=

1

m(c− 1)
. (13.4)

Summing up the probabilities in (13.3) and (13.4), the probability that some fixed key
x ∈ S causes a rehash when Insert(x) is called is at most

1

nd
+

1

m(c− 1)
. (13.5)

Thus, the probability that a rehash occurs during n insert operations is bounded by

1

nd−1
+

1

c(c− 1)
. (13.6)

Now choose c > (1 +
√

5)/2 = 1.6180 . . . . Then c(c − 1) > 1. Hence, with constant
positive probability no rehashes occur during the insertion of all keys of S.

Now consider an arbitrary single Insert() operation op during a sequence of n Insert()

operations that starts with an empty dictionary. According to (13.5), the probability
that op causes a rehash is O(1/n). On the other hand, if it does incur a rehash, then by
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(13.6) and our choice of c, only a constant number of rehashes will occur in expectation,
until all elements are stored. Hence, the expected time for those rehashes is O(n).
Since O(n) expected time for rehashes is only needed with probability O(1/n), and with
probability 1−O(1/n) no rehashes are needed, the total expected time for operation op
is O(1). This yields the following result.

Theorem 13.13. Let threshold ≥ 2 log n and c > (1 +
√

5)/2. If n keys are inserted
into two hash tables, each of size m = dc · ne, then every single Insert operation has
an expected running time of O(1).
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14 A Technique for Proving Lower Bounds

14.1 Two-Person Zero-Sum Games

See Section 2.2.1 in the textbook

Consider a payoff matrix M with entries in R. Two players, Rachel and Charlie, try to
maximize their payoff as follows: First Rachel announces a row i, then Charlie picks a
column j. Finally, Charlie has to pay Mi,j to Rachel. Hence, Charlie tries to minimize
Mi,j and Rachel tries to maximize Mi,j. An example is the rock-paper-scissors game.
In this game, two players count aloud “Rock Paper Scissors” and on the fourth count
they both simultaneously change their hands into one of three gestures, indicating either
rock, paper, or scissors. Each gesture defeats exactly one other gesture (rock defeats
scissors, scissors defeat paper, and paper defeats rock), and each player’s objective is to
defeat the other player’s gesture. The game has the following payoff matrix:

Scissors Paper Rock

Scissors 0 1 -1
Paper -1 0 1
Rock 1 -1 1

Such a game is called a zero-sum game, because the total gain of all players is equal to
the total loss of all players. A pure strategy of Rachel is a fixed row i. Assume that
Rachel has the pure strategy i. Then the best strategy of Charlie is to pick the column
which minimizes Mi,j. Thus, the amount Charlie has to pay is P (i) = minjMi,j. Hence,
Rachel should choose the row that maximizes P (i). It follows that the best pure strategy
of Rachel guarantees her a payoff of

V pure
R = max

i
min
j
Mi,j

But what happens if Charlie starts the game, i.e., he has to announce a column first?
Then his best pure strategy guarantees that Charlie does not have to pay more than

V pure
C = min

j
max
i
Mi,j
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In the rock-paper-scissor game, it holds V pure
R = −1 and V pure

C = 1. The same is true for
any payoff matrix:

Lemma 14.1. For any payoff matrix M ,

max
i

min
j
Mi,j ≤ min

j
max
i
Mi,j.

Proof: Let ai = minkMi,k be the minimal entry in row i, and b` = maxiM`,j be the
maximal entry in column j. Since row i and column j have one entry in common, we
have ai ≤ bj. That is,

∀i, j : min
k
Mi,k ≤ max

`
M`,j.

This immediately implies the claim.

We say that a two-person zero-sum game has the solution (r, c), if r maximizes minjMr,j

and c minimizes maxiMi,c and

min
j
Mi,r = max

i
Mi,c.

This term is called the value of the game.

The rock-paper-scissors game has no solution. But in the following game, if Rachel
chooses row i, and the Charlie chooses column j, then Charlie has to pay j − i to
Rachel.

1 2 3

1 0 1 2
2 -1 0 1
3 -2 -1 0

Therefore, both players will choose the maximal row (column), no matter who starts the
game. Thus, the game has a solution (3, 3) with value 0.

Now suppose the players can make random choices. A mixed strategy is a probability
distribution on the set of possible (pure) stratgies. Rachel picks a p = (p1, . . . , pn) such
that

∑
i pi = 1, and Charlie picks q = (q1, . . . , qm) such that

∑
j qj = 1. Then row i is

chosen with probability pi and column j with probability pj. Again, Charlie pays Mi,j

to Rachel.
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Now the payoff is a random variable P , and

E[P ] =
∑

1≤i≤n

∑
1≤j≤m

piMi,jqj = pTMq.

Assume that Charlie knows Rachel’s mixed strategy (i.e., he knows p), and he can fix
his probability distribution according to this knowledge. For Charlies’ best choice, he
has to pay

VR = min
q
pTMq.

Thus, Rachel will choose a strategy p that maximizes this term. It follows that if both
choose the best strategies, but Rachel has to announce her strategy first, the expected
payoff is

VR = max
p

min
q
pTMq.

On the other hand, if Charlie has to announce his strategy first, and then Rachel can
“optimize” her strategy, then Rachel gains

VC = min
q

max
p
pTMq.

The following result says that it does not matter who has to announce the strategy first.

Theorem 14.2 (von Neumann’s Minmax Theorem). For any two-person zero-sum gam
specified by a matrix M ,

max
p

min
q
pTMq = min

q
max
p
pTMq.

Once Rachel’s mixed strategy p is fixed, then pTMq = a1q1 + · · ·+ amqm for some fixed
values a1, . . . , am, where ak = a1M1,k+· · ·+anMn,k for 1 ≤ k ≤ m. Hence, Charlie’s best
strategy is to pick the column j with probability 1 which minimizes aj. Thus, some pure
strategy for Charlie is optimal, if Rachel has to announce her strategy first. Similarly,
for a fixed mixed strategy announced by Charlie, Rachel has an optimal pure strategy.

Let ek = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is at the k-th position.

Theorem 14.3 (Loomis’ Theorem). For any two-person zero-sum game specified by
matrix M ,

max
p

min
j
pTMej = min

q
max
i
ei
TMq.
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14.2 Yao’s Technique

See Section 2.2.2 in the textbook.

Let A be a finite set of deterministic algorithms, and I be a finite set of inputs. For an
input x ∈ I and an algorithm A ∈ A, let C(x,A) denote the cost of A on input x (the
cost can be the running time, space complexity, or any other complexity measure).

Consider a game, where first Charlie announces a random distribution pA over the algo-
rithms, and, given pA, Rachel decides for an input x. Then we pick A according to the
distribution pA, and run A on the input x. Charlie has to pay an amount proportional
to the running time of A on x. Hence, the expected payoff is∑

A∈A

pA · C(x,A).

The expected running time of the algorithm described by pA on the worst input is thus

max
x∈I

∑
A∈A

pA · C(x,A).

Our goal is to prove a lower bound on this term.

We consider a two-person zero-sum game, where Charlie plays the algorithm designer
— he designs a randomized algorithm (i.e., he picks a random distribution over A).
Rachel is the adversary — she finds the worst input for a given randomized algorithm.
Loomi’s Theorem tells us that if first Charlie designs the optimal randomized algorithm
pA and then Rachel picks the worst case input x for that algorithm, the expected cost is
the same as when first Rachel picks the “worst” input distribution qx and then Charlie
designs the optimal (deterministic) algorithm A for that distribution. I.e.,

max
qx

min
A∈A

∑
x∈I

qx · C(x,A) = min
pA

max
x∈I

∑
A∈A

pA · C(x,A) (14.1)

We can conlude that

∀qx, pA : min
A∈A

∑
x∈I

qx · C(x,A) ≤ max
x∈I

∑
A∈A

pA · C(x,A).

This means that if the adversary picks an input distribution q first, and then the algo-
rithm designer designs the best possible deterministic algorithm for that distribution,
then the expected cost is at most as large, as if first the algorithm designer has to find
a randomized algorithm and then the adversary can choose the worst input for that
algorithm.
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Theorem 14.4 (Yao’s Minmax Principle). Let I be a finite set of inputs and A be a
finite set of algorithms. For all distributions p over I and q over A,

min
A∈A

E
x∈pI

[C(x,A)] ≤ max
x∈I

E
A∈qA

[C(x,A)]

Proof. Let α = minA∈AEx∈pI [C(x,A)] and β = maxx∈I EA∈qA [C(x,A)]. Then

∀A0 ∈ A : E
x∈pI

[C(x,A0)] ≥ α and

∀x0 ∈ I : E
A∈qA

[C(x0, A)] ≤ β.

Note that

E
x∈pI,A∈qA

[C(x,A)] =
∑
x0∈I

∑
A0∈A

C(x0, A0) · Probx∈pI(x = x0) · ProbA∈qA(A = A0)

=
∑
A0∈A

E
x∈pI

[C(x,A0)] · ProbA∈qA(A = A0) (14.2)

=
∑
x0∈I

E
A∈qA

[C(x0, A)] · Probx∈pI(x = x0). (14.3)

From (14.2) we obtain

E
x∈pI,A∈qA

[C(x,A)] =
∑
A0∈A

E
x∈pI

[C(x,A0)] · ProbA∈qA(A = A0)

≥
∑
A0∈A

α · ProbA∈qA(A = A0)

= α. (14.4)

Similarly, (14.3) implies

E
x∈pI,A∈qA

[C(x,A)] =
∑
x0∈I

E
A∈qA

[C(x0, A)] · Probx∈pI(x = x0)

≤
∑
x0∈I

β · Probx∈pI(x = x0)

= β. (14.5)

It follows that α ≤ β, which proves the claim.
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14.3 Black-Box Optimization

Black-Box optimization is the problem of finding the optimum of a function, if the only
way of gaining information about the function is to query the function value of a point.

We consider a finite search space, Sn (often Sn = {0, 1}n) and a class Fn of functions
f : Sn → R. For example, Fn can be the set of all quadratic functions on Sn, or the
class of all monotone functions, etc.

The problem is to find for some “unknown” function f ∈ Fn, the point x such that
f(x) is optimal. Throughout this lecture we assume that optimal means maximal, but
similarly we could try find the minimum. The only operation that reveals information
about f is the operation Query(x), which returns f(x).

A typical black-box algorithm queries a random point x0, and obtains f(x0). For a query
history

(
x0, f(x0)

)
,
(
x1, f(x1)

)
, . . . ,

(
xk, f(xk)

)
, the algorithm then decides (according to

some probability distribution), which point to query next.

Usually we cannot assume that we know whether a function value is optimal or not.‘
Therefore, we allow a black-box algorithm to run forever, but we only measure the
number of queries until the a point x is queried that maximizes f(x).

Definition 14.5. The black-box complexity of a family F of functions f : S → R is

min
B∈B

max
f∈F

E[Q(f,B)],

where B is the class of randomized black-box algorithms and Q(f,B) is the random
variable that measures the number of queries it takes during a run of B until a point
x∗ ∈ S has been queried, such that f(x∗) is maximal.

Definition 14.6. A Needle in the Haystack Function over Sn is a function f : Sn → R,
with exactly one point x0 ∈ Sn such that f(x0) = 1 and where f(x) = 0 for all x ∈
Sn − {x0}.

Let Sn = {0, 1}n, and Na be the Needle in the Haystack function over Sn which has its
maximum function value in a ∈ {0, 1}n.

Theorem 14.7. Any black-box algorithm for the class Nn of functions Na, a ∈ {0, 1}n,
has black-box complexity at least 2n−1 + 1

2
.
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Proof: Let n be fixed. We want to prove a lower bound, so we have to choose a
probability distribution over inputs, i.e., functions in Nn, and then show a lower bound
for the black-box complexity of the best deterministic algorithm, if the input is chosen
according to the selected probability distribution. We use the uniform distribution, i.e.,
each function Na, a ∈ {0, 1}n, is picked with the same probability 2−n.

Now let A be the class of all deterministic algorithms that do not query the same point
twice. Then A is finite, so we can apply Yao’s Min-Max principle. Consider an arbitrary
algorithm A ∈ A. Our goal is to prove a lower bound for the black-box complexity of
the algorithm A on a function Na that is chosen uniformly at random from Nn.

Let T be the random variable that denotes the number of queries A performs for the
function Na. What is the expectation of T?

Whenever A queries a point x 6= a, it obviously gains no information, other that that
x is not the maximum. Thus, there is a unique sequence x1, x2, . . . , x2n , of the points
that A queries in this order, if it doesn’t discover the optimum until the last step. The
algorithm queries point a in the i-th step, if and only if a = xi. Since a is uniformly
distributed over {0, 1}n, the probability that a = xi is exactly 1/2n for each 1 ≤ i ≤ 2n.
Thus,

E[T ] =
∑

1≤i≤2n

i · 1

2n
=

1

2n
(1 + · · ·+ 2n) =

1

2n
· 2n(2n + 1)

2
= 2n−1 +

1

2
.

Hence, there exists a probability distribution over the inputs (i.e., the uniform distri-
bution over Nn), such that every deterministic algorithm needs at least and expected
number of 2n−1 + 1

2
queries. As a consequence of Yao’s Min-Max principle, for every ran-

domized algorithm there is a function in Nn, such that the expected number of queries
is at least 2n−1 + 1

2
.

How good is the lower bound proved in Theorem 14.7? Consider an algorithm that first
fixes a random order x1, . . . , x2n , and then queries the points in this order. Then again,
the probability that the optimum is found in the i-th step is exactly 1/2n. Hence, the
expected running time is also

1

2n
(1 + · · ·+ 2n) = 2n−1 +

1

2
.

So this algorithm is optimal.
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14.4 Game Tree Evaluation

See Sections 2.1 and 2.2.3 in the textbook.

A game tree is a rooted tree, where each leaf u is labeled with a value val(u). The level
of a node v, `(v) is the length of the path from the root to v. Hence, the root has level
0, its children have level 1, and so on. Each inner node u has a value that is determined
recursively as

val(u) =

{
min {val(v) | v is a child of u} if `(v) is even

max {val(v) | v is a child of u} if `(v) is odd.

The game tree corresponds to a game between two players. When the first player makes
the first move, this corresponds to choosing one of the root’s children, say u1. Then the
second player chooses a child of u1, and so on. When a leaf is reached, the game is over,
and the first player has to pay the amount corresponding to the value of the leaf to the
second player. Thus, the value of a node in the game tree corresponds to the optimal
payoff for each player, if both players play optimally.

Our goal is to compute the value val(r) of the root r. This tells us how much the
first player hast to pay at most, if that player plays an optimal strategy. Here we only
consider games, where the payoff is 0 or 1, i.e., it is only about winning or losing the
game. (The first player wins, if the outcome is 0, and otherwise the second player wins.)
Moreover, we will only consider game trees with an even number of levels and where
each non-leaf node has the same number of children.

Definition 14.8. Let Td,k be the family of trees with the following three properties:

1. Every inner node has exactly d children.

2. All leafs are on level 2k.

3. For all leafs u, val(u) ∈ {0, 1}.

Every tree in Td,k has N = d2k leaves. Moreover, we can replace min by AND (∧) and
max by OR (∨).

It is easy to see that for every deterministic algorithm, the leaves can be assigned values,
such that the algorithm has to read all leaf values. Hence, the worst-case time complexity
is N .
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14.4.1 A Randomized Algorithm for Game Tree Evaluation

In the following we consider only the case d = 2 (d > 2 works with essentially the same
idea). Let u be an ∧-vertex with children u0, u1. We would like to find out, whether
either val(u0) = 0 or val(u1) = 0.

We can do this as follows: First, we choose i ∈ {0, 1} at random and recursively compute
val(ui). If val(ui) = 0, we are done, as we know that val(u) = val(ui) ∧ val(u1−i) = 0.
Otherwise, if val(ui) = 1, we have to compute val(u1−i) and return that value.

Algorithm 10: GameTreeEval

Input: A node v in a tree T2,k

Output: val(v)

1 if v is a leaf then return val(v)

2 Let v0 and v1 be the children of v

3 Pick i ∈ {0, 1}
4 t :=GameTreeEval(vi)

5 if v is a ∨-node and t = 1 then return 1

6 if v is a ∧-node and t = 0 then return 0

7 return GameTreeEval(vi−1)

The idea for the analysis is as follows: Suppose val(u) = 0. Then at most one child has
value 0, and so with probability at least 1/2 we are done after computing the value of
one child. Now consider the case val(u) = 1. Let v be he parent of u, and let u′ be the
sibling of u. Then v is an ∨-node. In order to evaluate v, we chose a node from u and
u′ at random to evaluate that node first. We had a probability of 1/2 of choosing u for
evaluation first. If we chose u first, then we don’t have to evaluate u′.

Analysis. For a tree T ∈ T2,k, let X(T ) be the number of leaves the algorithm Ga-
meTreeEval queries. Let Xk = max {E[X(T )] | T ∈ T2,k}. We prove by induction that
E[Xk] ≤ 3k.

For k = 0, each tree in T2,k consists only of one leaf. Hence, E[Xk] = 1 = 3k.

Now let k ≥ 1. Consider a tree T ∈ T2,k whose root is an ∧-vertex w with ∨-children
v1 and v2. For i = 1, 2, let the two children of vi be the roots of trees Ti,1, Ti,2 ∈ T2,k−1.
Thus,

val(w) = val(v1) ∧ val(v2) =
(
val(T1,1) ∨ val(T1,2)

)
∧
(
val(T2,1) ∨ val(T2,2)

)
.
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For i, j ∈ {1, 2} let Yi,j be the indicator random variable indicating that tree Ti,j is
evaluated and Y = Y1,1 + Y1,2 + Y2,1 + Y2,2.

Claim 14.9. E[Y ] ≤ 3.

Proof. We consider the cases val(w) = 1 and val(w) = 0:

Case 1: val(w) = 1. Then val(v1) = val(v2) = 1. The algorithm has to call
GameTreeEval(vi) for i = 1 and i = 2. Fix i ∈ {1, 2}. Since val(vi) = 1 and vi is
an ∨-node, val(Ti,j) is 1 for at least one index j ∈ {1, 2}. Thus, with probability 1/2
the tree Ti,j gets evaluated first, and then the other tree, Ti,1−j won’t get evaluated at
all. With probability at most 1/2, both trees get evaluated. Therefore, E[Yi,1 + Yi,2] ≤
2 ·1/2+1/2 = 3/2. Since this is true for i = 1 and for i = 2, we have E[Y ] ≤ 2 ·3/2 = 3.

Case 2: val(w) = 0. Then there is an index i ∈ {1, 2} such that val(vi) = 0. If we
choose vi for evaluation first, then we will not evaluate val(v1−i). Hence, with probability
at least 1/2 we will only evaluate one of the two nodes v1 and v2. If that happens, we
evaluate only two of the sub-trees Ti,j. With probability at most 1/2 we may have to
evaluate all four sub-trees.1 Thus, E[Y ] ≤ (1/2) · 2 + (1/2) · 4 = 3.

Now let Z` be the number of leafs we evaluate in the `-th tree among Ti,j, 1 ≤ i, j ≤ 2
that gets evaluated. By the induction hypothesis, E[X(Ti,j)] ≤ 3k−1 for 1 ≤ i, j ≤ 2,
and thus E[Z` | ` ≤ Y ] ≤ 3k−1.

We apply Wald’s Theorem (Theorem 7.1) to obtain

E[X(T )] = E[Z1 + · · ·+ ZY ] ≤ E[Y ] · E[Z` | ` ≤ Y ] ≤ 3 · 3k−1 = 3k.

This proves the induction hypothesis and we get the following result.

Theorem 14.10. For a tree from T2,k, the expected number of leaves queried by algorithm
GameTreeEval is less than N0.793.

Proof: Note that N = 22k = 4k. We have

E[X(T )] ≤ 3k = 2k log 3 = 4(k/2) log 3 = N (1/2) log 3.

And (log 3)/2 = 0.79248 . . . .
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14.4.2 A Lower Bound for Game Tree Evaluation

In the following we prove a lower bound on the running time for randomized algorithms
that evaluate game trees. In particular, we prove a lower bound on E[X], where X is
the number of of leaves that the optimal randomized algorithm queries.

First note that we can replace all gates in a game tree with an even number of levels
with NOR gates:

x6 y := NOR(x, y) := x ∨ y.

Recall the De Morgan’s laws:

x ∨ y = x ∧ y and x ∧ y = x ∨ y

Thus,

(x1 ∨ x2) ∧ (x3 ∨ x4) = (x1 ∨ x2) ∧ (x3 ∨ x4) = (x1 ∨ x2) ∨ (x3 ∨ x4)

= (x1 6 x2) 6 (x3 6 x4)

If we replace one ∧- and one ∨-level at once by two 6-levels, the function represented
at the root does not change.

W.l.o.g. we can assume that an algorithm never queries the same leaf twice. Then each
deterministic algorithm for game tree evaluation corresponds to a sequence of functions:
When leaves `1, . . . , `k have been queried by the algorithm, the next leaf to query is
determined by the values val(`1), . . . , val(`k). Thus, each deterministic algorithm can
be described by a sequence of functions f0, . . . , fN−1, where fi : {0, 1}i → {1, . . . , N}
takes as input the values of the first leaves that were queried and outputs the next leaf
to be queried. Since there is only a finite number of such function sequences, the family
A of deterministic algorithms for game tree evaluation is finite, too.

The set of inputs is I = {0, 1}N . We have to fix a distribution µ over I and prove a
lower bound for

min
A∈A

E
x∈µI

[C(x,A)].

We choose an input distribution, where each node of the tree has value 1 with the
same probability p. We then show that an optimal algorithm has a special form: The
algorithm DFP (Depth-First-Pruning) queries leaves from left to right, and skips a leaf,
when that one has an ancestor whose value is already determined.
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We prove below that a depth-first-pruning algorithm is optimal for all balanced NOR
game trees, where each node has value 1 with the same probability p. Hence, we can
restrict ourselves to the class of algorithms A′ of depth-first-pruning algorithms if we
choose each leaf with a probability p as 0 and 1, so that every node will have value 0
and 1 with the same probability p.

If x = 1 with probability p and y = 1 with probability p, then

Prob(x6 y = 1) = Prob(x ∨ y = 0) = Prob(x = 0 ∧ y = 0) = (1− p)2.

Thus, we solve for p:

p = (1− p)2

⇔ 0 = p2 − 3p+ 1

⇔ p =
−(−3)±

√
(−3)2 − 4 · 1 · 1
2 · 1

⇐ p =
3−
√

5

2
.

Hence, if we choose p = (3 −
√

5)/2, and let each leaf have value 1 with probability
p, then every node in the tree has value 1 with probability p. It follows that the DFP
algorithm has the lowest expected running time for that tree.

Let Q(h) be the number of leaves that the DFP algorithm queries in such a tree of height
h. If h = 0, then Q(h) = 1, so E[Q(h)] = 1. Now suppose h ≥ 1, and let the root of
such a tree be r, and let u0 and u1 be the left and right child of r, respectively. The DFP
algorithm first evaluates leaves in the sub-tree rooted at u0. The expected number of
leaves to evaluate in this sub-tree is E[Q(h−1)]. With probability p, val(u0) = 1, and in
this case val(r) = 0 is determined, so u1 needs not be evaluated. With probability 1−p,
val(u0) = 0, and in this case u1 also needs to be evaluated. In this case the expected
number of leaf queries in the sub-tree rooted at u1 is again E[Q(h−1)]. Thus, we obtain
the following recurrence:

E[Q(h)] = E[Q(h−1)]+(1−p)·E[Q(h−1)] = (2−p)·E[Q(h−1)] = (2−p)2·E[Q(h−2)]

= · · · = (2− p)h · E[Q(0)] = (2− p)h.

If the tree has N leaves, then N is a power of two and h = logN . It follows that

E[Q(logN)] = (2− p)logN = N log(2−p) ≥ N0.6942.

It remains to prove that a DFP algorithm is optimal.
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Lemma 14.11. Let T be a balanced NOR game tree, where each node has value 1 with
probability exactly p (for some constant 0 ≤ p ≤ 1). If there is a game tree algorithm for
T that needs Q(T ) queries, then the expected number of queries by the depth-first-pruning
algorithm is at most E[Q(T )].

Proof. A depth-d straight algorithm is an algorithm that behaves as a depth-first-pruning
algorithm for all subtrees that have depth d. More precisely, if a depth-d straight algo-
rithm queries a leaf in a subtree Tv with root v, where Tv has depth d, then it determines
the value of v before it queries any leaf outside of Tv. Clearly, it suffices to show that
if T is a tree of depth 2k, then there is an optimal depth-2k straight algorithm that
evaluates T .

By induction, we prove that there is an optimal depth-d straight algorithm for all d ≥ 0.
For d = 0, all subtrees of depth d consist only of a leaf, so the claim is trivially true.

Now let A be an optimal depth-(d − 1) straight algorithm. Consider a run of A and
assume that A queries a leaf in a subtree of depth d rooted at some node w. Let a, b be
the children of w. Suppose A queries some leaves in the subtree Ta rooted at a, but then
queries some leaves outside of Ta before val(w) is determined. Since A is depth-(d− 1)
straight, it determines val(a) completely, but does not query a single leaf in Tb before
querying a leaf outside of Tw. Note that val(a) = 0 if val(w) is not determined after
evaluating a.

In the following we break up A into several parts, and then re-assemble these parts in
order to obtain two new algorithms, B and C. Algorithm B does not query a in the
beginning, but instead “assumes” val(a) = 0, and acts like A does in this case. Only
when algorithm A evaluates b and thus w later on, algorithm B has to evaluate both a
and b one after the other. Algorithm C evaluates a and b at the very beginning, and
then behaves like A does once it knows these values. We then prove that either B or C
is optimal. Clearly, B and C are depth-d-straight on the subtree Tw. Therefore, if we
apply the same technique for every subtree of depth d, we obtain an optimal algorithm
that is depth-d-straight.

First we describe how to break up A in several parts. Suppose val(a) = 1, and let A1 be
the queries A performs after it has determined val(a) = 1 (and thus val(w) = 0), until it
has evaluated the root of the game-tree. (More precisely, A1 is a probability distribution
over all possible leaf query sequences, that A performs if val(a) = 1.) Now suppose
val(a) = 0. Then with some probability 1 − q, A will be able to finish the algorithm
without evaluating b at all. Let A2 be the queries A executes in order to finish the
algorithm in this case. (To be precise, now A2 is a conditional probability distribution
over all leaf query sequences, given that the input is such that A does not need to go
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back and evaluate b.) With probability q, A will go back to evaluate b. Let A3 be the
query sequence of A until it evaluates b, and let A4 and A5 be the remaining leaf query
sequences by A, given that val(b) = 1 and val(b) = 0, respectively.

Given this algorithm A, we can define the new algorithms, B and C as described by the
flowcharts on p. 96. Algorithm B skips evaluating a in the beginning, and acts as A
after A has discovered that val(a) = 0. I.e., it either executes the query sequence A2, if
the game tree is such that A would not go back to evaluate b, or the query sequence A3

in case A would go back. In the former case, B finishes the algorithm. If B executes A3

instead, then it will eventually have to evaluate w, so it first evaluates a. If val(a) = 1,
then B continues as A would in the case A found val(w) = 0 after executing A3 and
then evaluating b. Hence, B executes A4. IF val(a) = 0, then B still has to evaluate b.
After that it is exactly in the same situation as A after it has evaluated b, and thus can
proceed as A by either executing A4 or A5.

Algorithm C first evaluates a and if val(a) = 1 it continues with A1 (as A). But if
val(a) = 0, then C evaluates b right away. If it determines val(b) = 1, then it is in the
same situation as when val(a) = 1, so it can proceed with A1. Otherwise, it proceeds as
A does for val(a) = 0, i.e., it either executes the query sequence A2 or A3, depending on
whether the input is such that A goes back to evaluate b or not. If C executes A2, then
it is done. In the case of A3, algorithm C now already “knows” that val(b) = 0 and thus
can proceed as A in this case, namely with A5.

The probabilities for each query sequence to be executed can be read off the flow chart on
page 96. (The label at the top left of a node marks the probability that this node is being
reached.) In the table below, we list for each algorithm and each query sequence part,
the probability that this query sequence is executed. Moreover, we list the differences
of these probabilities between algorithms B and A and algorithms C and A.

A B C B −A C −A

eval. a 1 q 1 −(1− q) 0

eval. b q(1− p) q(1− p) 1− p 0 (1− p)(1− q)

A1 p 0 p + p(1− p) −p p(1− p)

A2 (1− p)(1− q) 1− q (1− q)(1− p)2 p(1− q) −p(1− p)(1− q)

A3 q(1− p) q q(1− p)2 pq −pq(1− p)

A4 pq(1− p) pq + pq(1− p) 0 pq −pq(1− p)

A5 q(1− p)2 q(1− p)2 q(1− p)2 0 0

Now let Qi be the random variable that describes the number of queries in Ai, and let
γ be the expected number of queries to evaluate the root of a subtree at depth d − 1
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(e.g., a or b). If XA, XB, and XC are the number of queries that algorithm A, B, and
C perform, respectively, then their expectations can be determined as the weighted sum
of the values in the corresponding columns, where the weights are chosen according to
the expected number of queries performed in the query sequence corresponding to the
rows. For example, we have

E[XA] = 1 · γ + q(1− p)γ + pE[Q1] + (1− p)(1− q)E[Q2] + q(1− p)E[Q3]

+ pq(1− p)E[Q4] + q(1− p)2E[Q5].

Similarly, we can read off E[XB], E[XC ], and

E[XB −XA] = −(1− q)γ − pE[Q1] + p(1− q)E[Q2] + pqE[Q3] + pqE[Q4],

and

E[XC −XA] = (1− p)(1− q)γ + p(1− p)E[Q1]− p(1− p)(1− q)E[Q2]

− pq(1− p)E[Q3]− pq(1− p)E[Q4].

Now we multiply E[XB −XA] with 1− p and add it to E[XC −XA] to obtain

E[(1− p)(XB −XA) +XC −XA] = 0.

Hence,
(1− p)E[XB] + E[XC ] = (1− p)E[XA] + E[XA].

But this means either E[XB] ≤ E[XA] or E[XC ] ≤ E[XA]. Therefore, since A is assumed
to be optimal, at least one of B and C is optimal, too. Since B and C are both depth-d
straight, the induction hypothesis is proven.
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15 Maximum Satisfiability and Derandomization

A Randomized Approximation Algorithm for MaxSAT. See Section 5.2 in the text-
book.

Derandomization - The Method of Conditional Probabilities The method of con-
ditional probabilities is a method that allows us to derandomize randomized algorithms
if they have certain properties. We illustrate this with an example; Additional, more
general explanations can be found in Section 5.6 in the texbook.

Theorem 15.1. There is a polynomial time deterministic algorithm that finds for any
Max-3-SAT input with m clauses an assignment that satisfies at least (7/8)m clauses.

Proof. Let the input be a collection of m clauses C1, . . . , Cm over n variables x1, . . . , xn.
Consider the randomized algorithm that assigns each literal xi with probability 1/2 the
value 0 and with probability 1/2 the value 1. Then for each 1 ≤ i ≤ m, clause Ci is
satisfied with probability 7/8. Thus, the expected number of clauses that are satisfied
is (7/8)m.

Now we derandomize this algorithm. We assign Boolean values to the variables x1, . . . , xn
(in this order) in such a way, that when we have assigned the values a1, a2, . . . , ai to the
first i variables, then if we would pick random values for the remaining variables, the
expected number of satisfied clauses is still at least (7/8)m.

More precisely, let X denote the number of clauses that are satisfied by a random
assignment. We have seen above that

E[X] = (7/8)m.

Our goal is to find an assignment a1 ∈ {0, 1} for the variable x1, so that if we let x1 = a1,
then the expected number of clauses satisfied by a random assignment to the remaining
clauses is still (7/8)m. More precisely, we would like to determine a1 so that

E[X|x1 = a1] ≥ (7/8)m.
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Such a value a1 ∈ {0, 1} exists, because

7

8
·m ≤ E[X] = E[X|x1 = 0] · 1

2
+ E[X|x1 = 1] · 1

2
,

so either E[X|x1 = 0] ≥ (7/8)m or E[X|x1 = 1] ≥ (7/8)m.

But how do we know which one is the right one? It turns out that it is easy to compute
E[X|x1 = a1] efficiently: The probability pj that a clause Cj is satisfied by a random
assignment to the remaining variables x2, . . . , xn, given x1 = a1 is 1 if the clause contains
the literal x1, and it is 1−1/2k, if the clause contains exactly k literals that are neither x1

or x1. We can easily compute pj for j = 1, . . . ,m, and then E[X|x1 = a1] = p1 +· · ·+pm.

Hence, in polynomial time we can find an assignment a1 for variable x1, such that
E[X|x1 = a1] ≥ (7/8)m. In the same way we can then determine a2 ∈ {0, 1} such
E[X|x1x2 = a1a2] ≥ (7/8)m, and so on until we have found an assignment a1, a2, . . . , an
such that E[X|x1x2 . . . xn = a1a2 . . . an] ≥ (7/8)m. Then clearly, the number of clauses
satisfied by this assignment is at least (7/8)m. It is obvious that the algorithm has
polynomial running time.
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16 Bloom Filters and Negative Associated Random
Variables

16.1 Chernoff Bounds for Negative Dependence

Sometimes we need strong tail bounds for the sums of random variables that are not
completely independent, but almost independent. Suppose we throw m balls into n bins
and we would like to determine the number of covered bins, i.e., the number of bins
that receive at least one ball. Let Xi be the indicator random variable with value 1 if
and only if bin i receives a ball and X =

∑
1≤i≤nXi the number of covered bins. Then

E[Xi] = (1− 1/n)m and thus E[X] = n · (1− 1/n)m.

We would like to apply tail bounds to obtain that with high probability X does not devi-
ate much from its expectation. However, we cannot apply Chernoff Bounds immediately
because the random variables Xi are not independent (if Xi = 1, then the probability
that Xj = 1, j 6= i, is smaller than if Xi = 0, because the event Xi = 1 implies that one
of the n balls falls in bin i).

But the dependence of these random variables is of a special type: If one of them (or a
subset of them) has a “high value” (in this case 1), then the probability other random
variables have a high value is smaller. This kind of dependence is “negative”. For such a
dependence we can still use strong concentration bounds, as we will show in this section.

Definition 16.1 (Negative Association). Random variables X1, . . . , Xn are negatively
associated if for any two disjoint sets I, J ⊆ {1, . . . , n} and all functions f and g that
are both non-increasing

E
[
f(Xi, i ∈ I) · g(Xj, j ∈ J)

]
≤ E[f(Xi, i ∈ I)] · E[g(Xj, j ∈ J)]. (16.1)

The main observation is that Chernoff Bounds still hold if the underlying indicator
variables are negatively independent



CPSC 522 & 622, Winter 2013 Randomized Algorithms

Theorem 16.2 (Chernoff Bounds with Negative Association). Let X1, . . . , Xn ∈ {0, 1}
be negatively associated random variables and let X =

∑
1≤i≤nXi and µ = E[X]. Then

the Chernoff Bounds from Theorems 8.4 and 8.5 hold. In particular, for all 0 < ε ≤ 1

Prob(X > (1 + ε)µ) ≤ e−µε
2/3, and (16.2)

Prob(X < (1 + ε)µ) ≤ e−µε
2/2. (16.3)

In these notes we will only prove (16.2. We use the following simple observation.

Lemma 16.3. Let X1, . . . , Xn be negatively associated. Then for any non-decreasing
and non-negative functions fi, i ∈ {1, . . . , n}

E

[ ∏
1≤i≤n

fi(Xi)

]
≤
∏

1≤i≤n

E[fi(Xi)].

Proof. We prove the lemma by induction on n. For n = 1 the claim states that
E[f1(X1)] ≤ E[f1(X1)], which is obviously true.

Now suppose n > 1 and we have proved the induction hypothesis for n − 1 variables,
i.e.,

E

[ ∏
1≤i≤n−1

fi(Xi)

]
≤

∏
1≤i≤n−1

E[fi(Xi)]. (16.4)

Define I := {1, . . . , n− 1} and J = {n} and

f(Xi, i ∈ I) :=
∏

1≤i≤n−1

fi(Xi) and g(Xj, j ∈ J) := fn(Xn).

Then f and g are non-decreasing, since the functions fi, 1 ≤ i ≤ n, are non-decreasing.
Hence, by the definition of negative dependence we have

E

[ ∏
1≤i≤n

fi(Xi)

]
= E[f(Xi, i ∈ I) · g(Xn)] ≤ E[f(Xi, i ∈ I] · E[g(Xn)]

= E

[ ∏
1≤i≤n−1

fi(Xi)

]
· E[fn(Xn)]

(16.4)

≤
∏

1≤i≤n−1

E[fi(Xi)] · E[fn(Xn)]

=
∏

1≤i≤n

E[fi(Xi)].
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Proof of Theorem 16.2. Consider the proof of Theorem 8.4. We defined Yi = et·Xi for
1 ≤ i ≤ n and some positive value t. To prove an inequality in (8.5), we used that the
random variables Xi and thus the variables Yi are all independent, and thus

E[
∏

1≤i≤n

Yi] =
∏

1≤i≤n

E[Yi].

Nowhere else in the proof is the independence of the random variables Xi required. But
if the random variables Xi are negatively associated, then applying Lemma 16.3 for the
functions fi(Xi) = Yi = et·Xi yields

E[
∏

1≤i≤n

Yi] ≤
∏

1≤i≤n

E[Yi].

Hence, the inequality stated in (8.5) remains true.

16.2 Properties of Negative Dependence

In the following we present some simple properties of negatively associated random
variables. The proofs follow easily from the definition of (conditional) expectation and
linearity of expectation and are omitted in these notes.

Lemma 16.4 (Closure under Products). Let X1, . . . , Xn and Xn+1, . . . , Xm be two in-
dependent families of random variables that are each negatively associated. Then the
family X1, . . . , Xm is also negatively associated.

Lemma 16.5 (Disjoint Monotone Aggregation). Let X1, . . . , Xn be negatively associated
random variables and J1, . . . , Jk be disjoint subsets of {1, . . . , n}, and f1, . . . , fk be non-
decreasing functions. Then the random variables

Yj = fj(Xi, i ∈ Ji), 1 ≤ j ≤ k

are negatively associated.

Remark 16.6. Consider two real valued functions f and g. Let f ′(x) = a · f(x) + b and
g′(y) = b · g(y) + c for some fixed values a, b, c, d ∈ R, where a and c have the same sign
(i.e., a · c ≥ 0). A simple calculation shows the following implication:

E[f(x) · g(y)] ≤ E[f(x)] · E[g(y)] ⇔ E[f ′(x) · g′(y)] ≤ E[f ′(x)] · E[g′(y)]. (16.5)

Hence, in order to show that the sequence X1, . . . , Xn of random variables is negatively
associated it suffices to prove inequality (16.1) for all functions f and g which have the
following properties:
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1. f(0 . . . 0) = g(0 . . . 0) = 0, and

2. f and g are both non-decreasing.

This can be seen as follows: Suppose we need to prove statement (16.1) for functions
f and g which don’t satisfy both of these properties. We let a = c = 1 if f and g are
both non-decreasing and a = b = −1 if f and g are both non-increasing. Then we define
b = −a · f(0, . . . , 0) and d = −c · g(0, . . . , 0). Defining the functions f ′ = a · f + b and
g′ = c · g + d we have f ′(0, . . . , 0) = a · f(0, . . . , 0) − a · f(0, . . . , 0) = 0, and similarly
g′(0, . . . , 0) = 0. Moreover, f ′ and g′ are both non-decreasing. Hence, if we prove that
f ′ and g′ satisfy (16.1), it follows from (16.5) that f and g satisfy the property as well.

16.3 Example I: Balls Into Bins

Consider the example of throwing m balls into n bins. Let Bi,k, 1 ≤ i ≤ n, 1 ≤ k ≤ m,
be the indicator random variable which is 1 if and only if ball k falls in bin i.

Proposition 16.7. For each k ∈ {1, . . . ,m} the random variables B1,k, . . . , Bn,k are
negatively associated.

Proof. Let I, J ⊆ {1, . . . , n} be disjoint and let f, g be either both non-decreasing or
both non-increasing functions. By Remark 16.6 we can assume w.l.o.g. that f and g
are both non-decreasing and f(0, . . . , 0) = g(0, . . . , 0) = 0. In particular, f and g are
non-negative. Note that Bi,k = 1 implies Bj,k = 0 for all j 6= i: if ball k falls in bin
i then it cannot fall in bin j 6= i. Hence, if one of the random variables Bi,k, i ∈ I,
has value 1 then all random variables Bj,k, j ∈ J , must have value 0. It follows that if
f(Bi,k, i ∈ I) > 0 then g(Bj,k, j ∈ J) = 0. In particular, since f and g are non-negative,
f(Bi,k, i ∈ I) · g(Bj,k, j ∈ J) = 0. We conclude

E[f(Bi,k, i ∈ I) · g(Bj,k, j ∈ J)] ≤ f(Bi,k, i ∈ I)] · E[g(Bj,k, j ∈ J)]

Now let Bi, 1 ≤ i ≤ n, be the number of balls that fall in bin i, and let Ti, 1 ≤ i ≤ n,
be the indicator variable which is 1 if and only if at least one ball falls in bin i.

Proposition 16.8. The random variables B1, . . . , Bn are negatively associated, and so
are the random variables T1, . . . , Tn.
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Proof. From Proposition 16.7 we have that for each 1 ≤ k ≤ m the random variables
Bi,k, 1 ≤ i ≤ n, are negatively associated. By closure under products, all random
variables Bi,k, 1 ≤ i ≤ n, 1 ≤ k ≤ m are negatively associated. Now the claim follows
immediately from disjoint monotone aggregation using

Bi = B1,1 + · · ·+B1,k

and
Ti = max{B1,1, · · ·+B1,k},

and noting that the mappings (x1, . . . , xk) 7→ x1 + · · · + xk and (x1, . . . , xk) 7→
max{x1, . . . , xk} are non-decreasing.

16.4 Example II: Bloom Filters

[TO DO]
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17 Routing on a Hypercube

See the textbook, Section 4.2. These notes are partly based on a draft provided by Lisa
Higham.

In a parallel computer, where processing elements are connected through communication
links, often communication delay overwhelms local computation time. Bottlenecks in
the communication make this delay even greater. Hence, we are motivated to design
schemes that decrease the likelihood that packets, moving between different source and
destination pairs, try to traverse the same communication link at the same time.

Model. We model a parallel computer as a directed graph where nodes represent pro-
cesses and there is a directed edge from node u to node v, if there is a communication
link from the process corresponding to u to that corresponding to v. Communication
proceeds in synchronous rounds: in each round each process can send at most one packet
of communication on each of its outgoing links. To this end, every directed edge contains
a queue. Once a packet reaches node v, the packet is inserted in the queue Qe of an
edge e leaving v, and in each subsequent round exactly one packet from Qe is routed
over that edge.

One common topology for modeling aparallel computer is a hypercube. The n-
dimensional hypercube is the undirected graph H = (V,E) where

V =
{
b1b2 . . . bn

∣∣∣ bi ∈ {0, 1}}, and

E =
{(
b1 . . . bi−1bibi+1 . . . bn, b1 . . . bi−1bibi+1 . . . bn

) ∣∣∣ 1 ≤ i ≤ n
}
.

I.e., each node is represented by a binary string of length n, and two nodes with binary
representations b1 . . . bn and c1 . . . cn are adjacent, if their binary representations differ
in exactly one bit.

The n-dimensional hypercube has N = 2n nodes and n · N/2 undirected edges, and its
diameter is n = logN . To model our parallel computer, we consider the directed graph
obtained by replacing each undirected edge in the hypercube with two directed edges in
opposite directions, thus accounting for n ·N directed edges.
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Function HypercubeRouting(b1 . . . bn, d1 . . . dn)

1 Let c1 . . . cn := b1 . . . bn.
2 while c1 . . . cn 6= d1 . . . dn do
3 Let j be the smallest index such that cj 6= dj.
4 Send pktv over the edge (c1 . . . cj−1cjcj+1 . . . cn, c1 . . . cj−1cjcj+1 . . . cn).

5 end

Figure 17.1: The Bit Fixing Algorithm

The Permutation Routing Problem. Consider a packet pktv originating at process v,
and let D(v) denote its destination. A route for pktv is a directed path in the graph from
v to D(v). A routing algorithm must specify a route for each packet. Furthermore, when
the routes of two or more packets use the same edge e in the same round, all but one of
these packets must be delayed. So an algorithm must also specify a queuing discipline
for each queue Qe, which determines how to schedule the traversal of the packets across
the common edge e.

A routing algorithm is oblivious if, for every process v, the route specified for a packet
originating at v is independent of D(u) for all u 6= v. We consider permutation routing,
where the function D : V 7→ V is a bijection.

A Deterministic Permutation Routing Scheme. A simple oblivious deterministic
hypercube routing algorithm uses a “bit-fixing” strategy (see Figure 17.1): To route a
packet pktv from v = b1 . . . bn to D(v) = d1 . . . dn the algorithm considers each bit in
order from 1 through n, and routes the packet along the edge that “fixes” the bit.

Clearly, any packet will reach its destination under the algorithm in Figure 17.1 after
travelling along at most n edges. Nevertheless, this simple scheme can have very bad
performance for the n-dimensional hypercube because of congestion at nodes. Define
the transpose mapping given by

D(b1 . . . bn) = bbn/2c+1 . . . bnb1 . . . bbn/2c.

Notice that D is a permutation.

It is not hard to see that for the permutation D and the algorithm HypercubeRouting()

in Figure 17.1 (using any queuing discipline) some packets require Ω(
√
N) steps: W.l.o.g.

let n be even. Consider the set U of the nodes in 1{0, 1}n/2−10n/2, i.e, the nodes
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Function RandomRouting(v,D)

/* Use FIFO (first-in first-out) for the queuing discipline, with

ties broken arbitrarily */

1 Pick independently, uniformly and at random a destination, σ, from {1, . . . , N}
2 HypercubeRouting(v, σ) /* Phase 1 */

3 wait until at least 4n rounds in total have elapsed
4 HypercubeRouting(σ,D(v)) /* Phase 2 */

Figure 17.2: A randomized routing algorithm.

1b2 . . . bn/20 . . . 0 for b2, . . . , bn/2 ∈ {0, 1}. The packets pktv, v ∈ U , have destinations
D(v) = 0 . . . 01b2 . . . bn/2 for some bits b2, . . . , bn/2 ∈ {0, 1}. Thus, each of them reaches
the node 0n = 0 . . . 0 after “fixing” the first n/2 bits, and leaves that node via the edge
e∗ = (0n, 0n/210n/2−1). Hence, all 2n/2−1 packets pktu, u ∈ U , have to get routed through
the same edge e∗. Since in every round at most one packet can traverse edge e∗, the
total routing time must be at least 2n/2−1 =

√
N/2.

Note that this lower bound is independent of the queuing discipline used. It is known
that no deterministic permutation routing algorithm can be fast. More precisely, for any
oblivious deterministic permutation routing algorithm for the an n-dimensional hyper-
cube (with N = 2n nodes) there is a permutation that requires Ω

√
N/n steps.

A Randomized Permutation Routing Scheme. A very simple randomization of the
deterministic routing scheme can lead to an exponential speedup: We use the determin-
istic bit-fixing strategy to route each packet to a randomly chosen intermediate node,
and then to route it from the intermediate node to the final destination. See Figure 17.2
for the algorithm RandomRouting(). As a queuing discipline we use a fist-in first-out
(FIFO) strategy, where the packets leave each queue Qe in the order in which they were
inserted. Packets that reach the start point v of edge e in the same round are inserted in
the queue in arbitrary order. (Several other queuing disciplines are known work, too.)

In the remainder of this section we prove that with high probability the algorithm
RandomRouting() routes every packet to its destination in fewer than 8n = 8 logN
rounds.

First, we analyze Phase 1 in which every packet is routed to its intermediate target. For
any packet v, let σ(v) denote the randomly chosen intermediate node for pktv. Let ρ(v)
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denote the route of pktv in Phase 1 of algorithm RandomRouting(), expressed as the
sequence of edges traversed.

The following lemma says that if two routes meet at some node and later diverge, they
will not meet again in Phase 1.

Lemma 17.1. Suppose the routes for two packets, say pkta and pktb have a node, w 6∈
{σ(a), σ(b)}, in common, but the node va that immediately succeeds w in a’s route is not
the node vb that immediately succeeds w in b’s route. (I.e., there is an edge {w, va} ∈ ρ(a)
and an edge {w, vb} ∈ ρ(b) s.t. a 6= b.) Then there is no node v that pkta and pktb both
traverse after w.

Proof. For a node v let biti(v) denote the i-th bit in the binary representation of v.
More precisely, if v = v1 . . . vn, then biti(v) = vi. There is exactly one bit i such that
biti(w) 6= biti(va). Similarly, there is exactly one bit j such that bitj(w) 6= bitj(vb).
Since va 6= vb, obviously i 6= j.

W.l.o.g. assume that i < j and biti(w) = 0. Then a and w agree in the first i − 1
bits, i.e., bit`(w) = bit`(a) for 1 ≤ ` < i and b and w agree in the first j − 1 ≥ i
bits, i.e., bitk(w) = bitk(b) for 1 ≤ k ≤ i. Moreover, by the bit-fixing strategy all
edges that are used on path ρ(a) after node va will not change the value of any of the
first i − 1 bits anymore. Hence, every node on path ρ(a) after node w has the prefix
a′1 . . . a

′
i−1a

′
i = w1 . . . wi−11. Similarly, no edge that is used on path ρ(b) after node w

will change the value of any of the first i bits. Hence, every node on the path ρ(b) after
node w has the prefix b′1 . . . b

′
i = w1 . . . wi−10. Since all nodes after w on path ρ(a) have

a different prefix of length i than the nodes after w on ρ(b), the lemma is true.

The following lemma states that the total number of times a packet pktv has to wait
in a queue is bounded by the number of packets that “cross” its path, i.e., the number
routes of other packets that have at least one edge with ρ(v) in common.

Lemma 17.2. Fix a vertex v and let

S = {pktu | ρ(u) ∩ ρ(v) 6= ∅}.

Then pktv reaches its destination in at most k+ |S| rounds, where k is the length of ρ(v).

Proof. Let ρ(v) = (e1, . . . , ek). Consider the beginning of some round t in which packet
v is located in queue QeRt

, 1 ≤ Rt ≤ k. For every edge ei, i ∈ {1, . . . , k}, we define a
value valt(ei) as follows:
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• if i ∈ {1, . . . , Rt − 1} then valt(ei) = 0;

• if i = Rt then valt(ei) is the number of packets in queue Qei which are not behind
pktv;

• if i ∈ {Rt + 1, . . . , k} then valt(ei) = max{1, |Qei |}.
Let St denote the set of packets in S which have not been entered in any queue Qei ,
1 ≤ i ≤ k, prior to round t. We define Φt = |St|+

∑
1≤i≤k valt(ei).

We prove for all t the following claim:

By the end of round t+ Φt − 1 packet pktv has reached its target. (∗)

At the beginning of round 1 every queue Qei , 1 ≤ i ≤ k, contains at most 1 element and
thus has value 1. Moreover, S1 ⊆ S, so we have Φ1 ≤ |S|+ k. Hence, the lemma follows
from (∗) for t = 1. Thus, it suffices to prove Claim (∗).
First consider the case Φt = 1. Note that valt(ei) ≥ 1 for all i ∈ {Rt, . . . , k}. Then Φt

is at least Rt − k + 1, i.e., the number of edges that pktv still has to traverse. Hence,
if Φt = 1 then Rt = k. Moreover, valt(ek) can be at most 1, so pktv must be the first
element in queue Qek , and thus it will traverse the last edge on its path in round t.

Now suppose Φt > 1. Consider some queue Qei , i > Rt, and suppose valt+1(ei) =
valt(ei) + δ for some value δ > 0. We argue that δ packets from St get added to Qei in
round t: If Qei is not empty at the beginning of round t, then in round t queue Qei loses
one packet (the first packet in the queue gets routed over edge ei), and it may receive
at most one packet from another queue Qej , j < Rt, namely from queue Qei−1

. If Qei is
empty at the beginning of round t, then it does not lose a packet, but one packet that
may be entered from some the queue Qei−1

does not affect the value of the queue, as
even with 0 packets its value is 1. Hence, in either case there are δ packets in S which
are added to Qei in round t, and which were not in one of the queues Qej , j 6= i, at the
beginning of the round. By Lemma 17.1, these δ packets cannot have been in any queue
Qe` , 1 ≤ ` ≤ k, in any previous round, so the δ packets are in St (but not in St+1). To
conclude, for every increase of the value of a queue Qei , i > Rt, there is a unique packet
in St − St+1. Hence, we have∑

Rt≤i≤k

(
valt+1(ei)− valt(ei)

)
≤ |St| − |St+1|,

which implies

|St+1|+
∑

Rt≤i≤k

valt+1(ei) ≤ |St|+
∑

Rt≤i≤k

valt(ei). (17.1)
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Now consider queue QeRt
. In round t packet pktv either leaves that queue and traverses

the edge eRt , which decreases the value of the queue from 1 to 0, or it moves one position
up in the queue, decreasing its value by 1. In either case, valt+1(eRt) = valt(eRt) − 1.
Since the value of all queues Qej , j < Rt, remains 0 in round t, we obtain from (17.1)

|St+1|+
∑

1≤i≤k

valt+1(ei) ≤ |St| − 1 +
∑

1≤i≤k

valt(ei).

Hence, Φt+1 ≤ Φt − 1.

Theorem 17.3. With probability at least 1 − 1/N every packet reaches its final desti-
nation in at most 8n rounds.

Proof. Consider an arbitrary packet pktv with route ρ(v) = (e1, . . . , ek), k ≤ n,
from the source v to the intermediate destination σ(v). As before, let S =
{u 6= v | ρ(u) ∩ ρ(v) 6= ∅} be the set of packets which cross v’s path in Phase 1, and
let X = |S|. First we determine an upper bound on E[X]:

Consider some edge e, 1 ≤ i ≤ k, which goes from b1 . . . bn to b1 . . . bi−1bibi+1 . . . bn.
Then the packets that use edge e must be routed from a source {0, 1}i−1bibi+1 . . . bn to a
destination b1 . . . bi−1bi{0, 1}n−i. Therefore, there are exactly 2i−1 packets (those whose
last n − i + 1 source bits are bi . . . bn) that could potentially use edge e. Each of these
packets uses edge e with probability 1/2i, because its destination must agree in the first
i coordinates with b1 . . . bi−1bi. Therefore, the expected number of packets that use edge
e is

2i−1

2i
= 1/2.

It follows that the expected number of packets that cross v’s path, i.e., use one of the
edges e1, . . . , ek is

E[X] ≤ k

2
≤ n

2
.

Now we prove that the random variable X is highly concentrated around its expectation,
i.e., the probability that X is a constant factor larger than its expectation is very small.
We would like to apply Chernoff Bounds, but in order to do that we have to show that
X is the sum of independent indicator random variables.

For each node u 6= v let Xu be the indicator random variable which has value 1 if and
only if ρ(u) contains an edge in {e1, . . . , ek}. Then all random variables Xu, u 6= v, are
independent (because each route ρ(u) is uniquely determined by u and the intermediate
destination σ(u), which is chosen independently for each packet). Hence, X =

∑
u6=vXu,
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is the sum of N − 1 independent indicator random variables, and we can apply Chernoff
Bounds: Using Inequality (8.4) of the Chernoff Bounds from Theorem 8.4 for D = 3n ≥
6E[X], we get

Prob(X ≥ D) < 2−D,

and thus
Prob(X > 3n) < 2−3n.

If X ≤ 3n, then at most 3n packets cross pktv’s path, so by Lemma 17.2 pktv reaches its
intermediate destination σ(v) after at most 3n+k ≤ 4n rounds. Hence, with probability
at least 1− 2−3n packet v reaches its destination after at most 4n rounds. By the union
bound, all N packets reach their destination after at most 4n rounds with probability
at least

1−N · 2−3n = 1− 2−2n.

The probability that some packet fails to reach its final destination within 8n rounds
is at most the probability that there is a packet that fails to complete Phase 1 in 4n
rounds plus the probability that there is a packet that fails to complete Phase 2 in 4n
rounds. Notice, however, that Phase 2 behaves like Phase 1 run backwards. Therefore
the analysis of analysis of Phase 1 applies to the analysis of Phase 2. So the probability
that all packets reach their final destination in 8n rounds is at least 1−2 ·2−2n ≥ 1−1/N
for N ≥ 1.
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