Math 140 Lecture 1

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

January 29, 2013

Outline

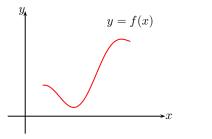
(1.1) Ways to Represent a Function

- The Definition of a Function
- The Vertical Line Test
- Piecewise Defined Functions
- Symmetry
- Increasing and Decreasing Functions
- A Note on Domains of Functions

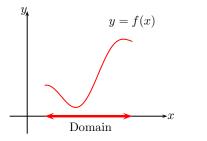
Outline

(1.1) Ways to Represent a Function

- The Definition of a Function
- The Vertical Line Test
- Piecewise Defined Functions
- Symmetry
- Increasing and Decreasing Functions
- A Note on Domains of Functions
- (1.2) A Catalog of Essential Functions
 - Linear Functions
 - Polynomials



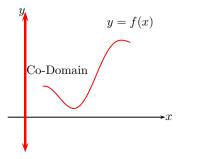
A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Domain)

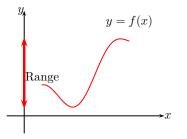
The set *D* is called the domain.



A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Co-domain)

The set E is called the co-domain.



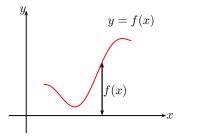
A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Range)

The set of all possible values taken by f(x) as the element x runs over elements of D is called the range of f.

FreeCalc Math 140

Lecture 1



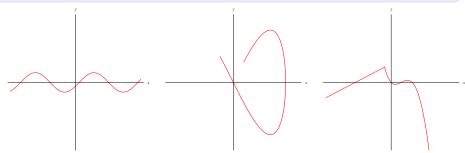
A function f is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set E.

Definition (Value of *f* at *x*)

The number f(x) is called the value of f at x, and is read "f of x."

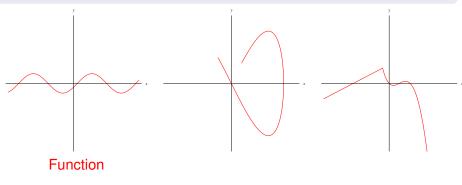
Question: How can we tell if a curve is the graph of a function or not? Answer: Use the vertical line test.

The Vertical Line Test.



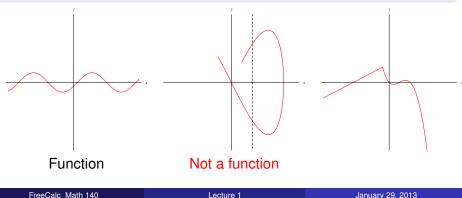
Question: How can we tell if a curve is the graph of a function or not? Answer: Use the vertical line test.

The Vertical Line Test.



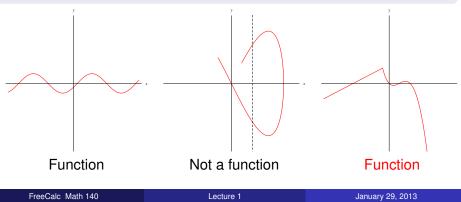
Question: How can we tell if a curve is the graph of a function or not? Answer: Use the vertical line test.

The Vertical Line Test.



Question: How can we tell if a curve is the graph of a function or not? Answer: Use the vertical line test.

The Vertical Line Test.



Piecewise Defined Functions

Definition (Piecewise Defined Function)

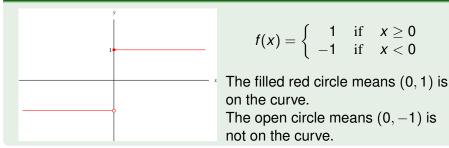
A piecewise defined function is a function that is defined by possibly different formulas on different subsets of its domain.

Piecewise Defined Functions

Definition (Piecewise Defined Function)

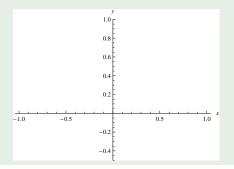
A piecewise defined function is a function that is defined by possibly different formulas on different subsets of its domain.

Example



The absolute value |a| of a number *a* is defined to be

$$|\boldsymbol{a}| = \left\{ egin{array}{cccc} \boldsymbol{a} & ext{if} & \boldsymbol{a} & \geq & \boldsymbol{0} \ -\boldsymbol{a} & ext{if} & \boldsymbol{a} & < & \boldsymbol{0}. \end{array}
ight.$$

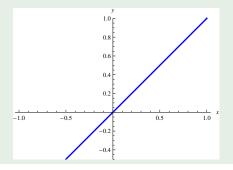


FreeCalc N	/lath 1	40
------------	---------	----

The absolute value |a| of a number *a* is defined to be

$$|\mathbf{a}| = \left\{ egin{array}{ccc} \mathbf{a} & \mathrm{if} & \mathbf{a} & \geq & \mathbf{0} \ -\mathbf{a} & \mathrm{if} & \mathbf{a} & < & \mathbf{0}. \end{array}
ight.$$

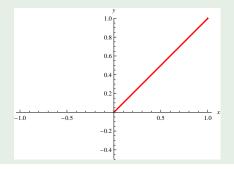
Sketch a graph of the function f(x) = |x|.



FreeCalc Math 140

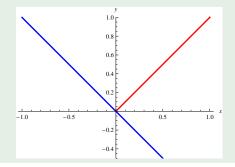
The absolute value |a| of a number *a* is defined to be

$$|\mathbf{a}| = \left\{ egin{array}{cccc} \mathbf{a} & \mathrm{if} & \mathbf{a} & \geq & \mathbf{0} \ -\mathbf{a} & \mathrm{if} & \mathbf{a} & < & \mathbf{0}. \end{array}
ight.$$



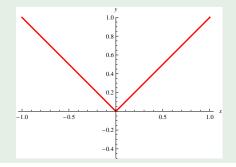
The absolute value |a| of a number *a* is defined to be

$$|\mathbf{a}| = \left\{ egin{array}{ccc} \mathbf{a} & \mathrm{if} & \mathbf{a} & \geq & \mathbf{0} \ - & \mathbf{a} & \mathrm{if} & \mathbf{a} & < & \mathbf{0}. \end{array}
ight.$$

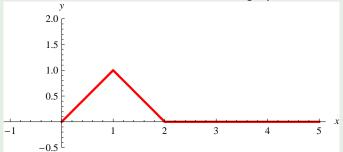


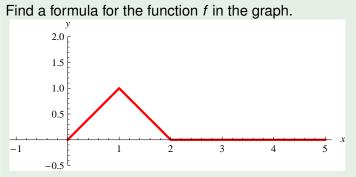
The absolute value |a| of a number *a* is defined to be

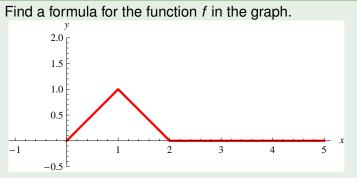
$$|\mathbf{a}| = \left\{ egin{array}{ccc} \mathbf{a} & \mathrm{if} & \mathbf{a} & \geq & \mathbf{0} \ - \, \mathbf{a} & \mathrm{if} & \mathbf{a} & < & \mathbf{0}. \end{array}
ight.$$



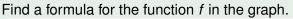
Find a formula for the function *f* in the graph.

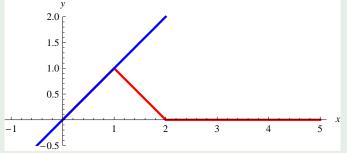




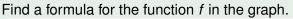


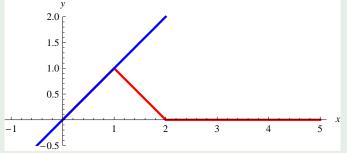
$$f(x) = \begin{cases} & \text{if } 0 \leq x < 1 \\ & \text{if } 1 \leq x < 2 \\ & \text{if } 2 \leq x < 5 \end{cases}$$



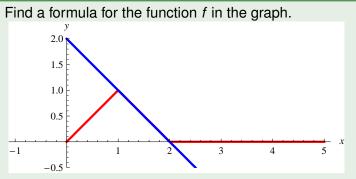


$$f(x) = \begin{cases} & \text{if } 0 \leq x < 1 \\ & \text{if } 1 \leq x < 2 \\ & \text{if } 2 \leq x < 5 \end{cases}$$

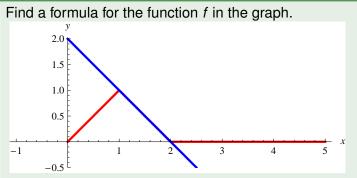




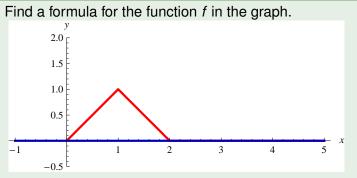
$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ & \text{if } 1 \le x < 2 \\ & \text{if } 2 \le x < 5 \end{cases}$$



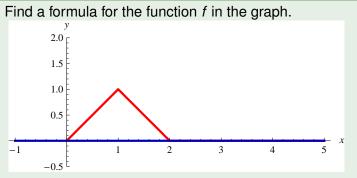
$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ & \text{if } 1 \le x < 2 \\ & \text{if } 2 \le x < 5 \end{cases}$$



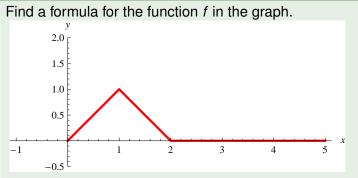
$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2-x & \text{if } 1 \le x < 2 \\ \text{if } 2 \le x < 5 \end{cases}$$



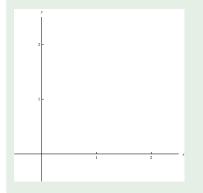
$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ 2-x & \text{if } 1 \le x < 2\\ \text{if } 2 \le x < 5 \end{cases}$$

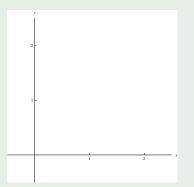


$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ 2-x & \text{if } 1 \le x < 2\\ 0 & \text{if } 2 \le x < 5 \end{cases}$$



$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1 \\ 2-x & \text{if } 1 \le x < 2 \\ 0 & \text{if } 2 \le x < 5 \end{cases}$$



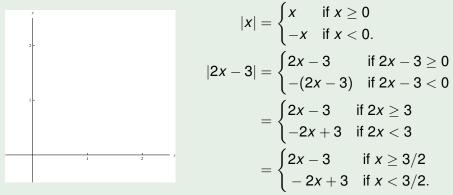


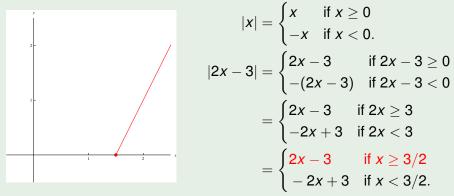
$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

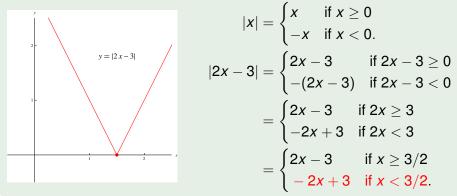
Sketch the function f(x) = |2x - 3|.

 $|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0. \end{cases}$ $|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0\\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$

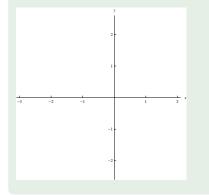
$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0. \end{cases}$$
$$|2x - 3| = \begin{cases} 2x - 3 & \text{if } 2x - 3 \ge 0\\ -(2x - 3) & \text{if } 2x - 3 < 0 \end{cases}$$
$$= \begin{cases} 2x - 3 & \text{if } 2x \ge 3\\ -2x + 3 & \text{if } 2x < 3 \end{cases}$$

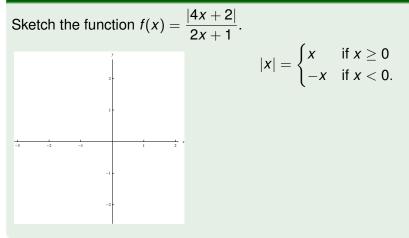


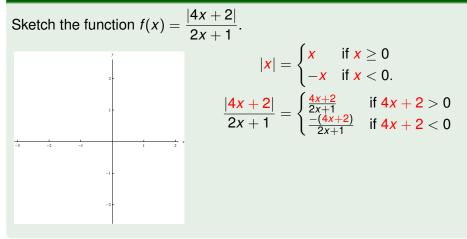


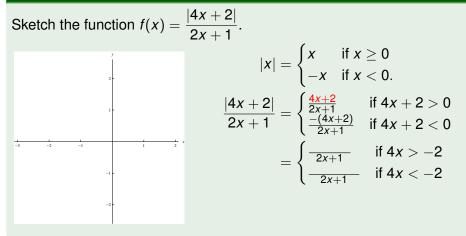


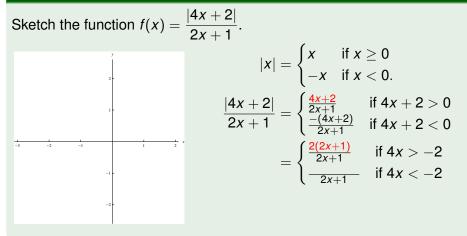
Sketch the function
$$f(x) = \frac{|4x+2|}{2x+1}$$

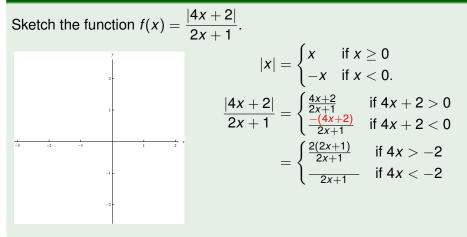


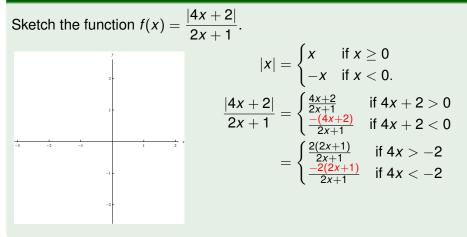




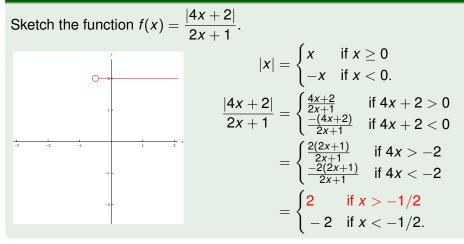


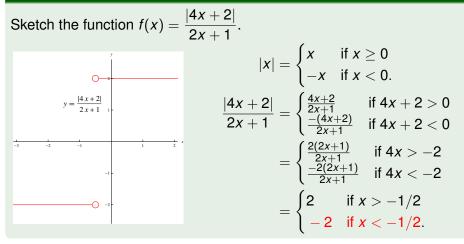






Sketch the function $f(x) =$	$\frac{ 4x+2 }{2x+1}.$
2-	$ x = egin{cases} x & ext{if } x \geq 0 \ -x & ext{if } x < 0. \end{cases}$
1- 	$\frac{ 4x+2 }{2x+1} = \begin{cases} \frac{4x+2}{2x+1} & \text{if } 4x+2 > 0\\ \frac{-(4x+2)}{2x+1} & \text{if } 4x+2 < 0 \end{cases}$
-3 -2 -1 1 2	$=\begin{cases} \frac{2(2x+1)}{2x+1} & \text{if } 4x > -2\\ \frac{-2(2x+1)}{2x+1} & \text{if } 4x < -2 \end{cases}$
-2-	$=\begin{cases} 2 & \text{if } x > -1/2 \\ -2 & \text{if } x < -1/2. \end{cases}$





Definition (Even and Odd Functions)

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Definition (Even and Odd Functions)

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

The function $g(x) = x^3$ is odd:

Definition (Even and Odd Functions)

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

$$f(-x) = (-x)^2 = x^2 = f(x).$$

The function $g(x) = x^3$ is odd:

Definition (Even and Odd Functions)

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (x^2 is Even, x^3 is Odd)

The function $f(x) = x^2$ is even:

$$f(-x) = (-x)^2 = x^2 = f(x).$$

The function $g(x) = x^3$ is odd:

$$g(-x) = (-x)^3 = -x^3 = -g(x).$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = g(-x) = h(-x) =$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

$$f(x) = x^5 + x$$
 $g(x) = 1 - x^4$ $h(x) = 2x - 1$
 $f(-x) = (-x)^5 + (-x) g(-x) = h(-x) =$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = \qquad h(-x) =$$

$$= -x^{5} - x \qquad h(-x) =$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = \qquad h(-x) =$$

$$= -x^{5} - x \qquad = -(x^{5} + x)$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = \qquad h(-x) =$$

$$= -x^{5} - x \qquad = -(x^{5} + x) = -f(x)$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = \qquad h(-x) =$$

$$= -x^{5} - x \qquad = -(x^{5} + x) = -f(x)$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = 1 - (-x)^{4} \qquad h(-x) =$$

$$= -x^{5} - x \qquad = -(x^{5} + x) \qquad = -f(x)$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = 1 - (-x)^{4} \qquad h(-x) = 1 - (-x)^{4} = -(x^{5} - x) = 1 - x^{4} = 1 - x^{4}$$

$$g(x) = 1 - x^{4} \qquad h(-x) = 1 - (-x)^{4} = 1 - x^{4} = -(x^{5} + x) = -f(x)$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = 1 - (-x)^{4} \qquad h(-x) = 1 - (-x)^{4} = 1 - x^{4}$$

$$= -x^{5} - x \qquad = 1 - x^{4} = 1 - x^{4}$$

$$= -(x^{5} + x) \qquad = g(x)$$

$$= -f(x)$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = 1 - (-x)^{4} \qquad h(-x) = 1 - (-x)^{4} = 1 - x^{4}$$

$$= -x^{5} - x \qquad = 1 - x^{4} = 1 - x^{4}$$

$$= -(x^{5} + x) \qquad = g(x)$$

$$= -f(x) \qquad \text{Therefore } g \text{ is even.}$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = 1 - (-x)^{4} \qquad h(-x) = 2(-x) - 1$$

$$= -x^{5} - x \qquad = 1 - x^{4}$$

$$= -(x^{5} + x) \qquad = g(x)$$

$$= -f(x) \qquad \text{Therefore } q \text{ is even.}$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = 1 - (-x)^{4} \qquad h(-x) = 2(-x) - 1$$

$$= -x^{5} - x \qquad = 1 - x^{4} \qquad = -2x - 1$$

$$= -(x^{5} + x) \qquad = g(x)$$

$$= -f(x) \qquad \text{Therefore } a \text{ is even}$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

$$f(x) = x^{5} + x \qquad g(x) = 1 - x^{4} \qquad h(x) = 2x - 1$$

$$f(-x) = (-x)^{5} + (-x) \qquad g(-x) = 1 - (-x)^{4} \qquad h(-x) = 2(-x) - 1$$

$$= -x^{5} - x \qquad = 1 - x^{4} \qquad = -2x - 1$$

$$= -(x^{5} + x) \qquad = g(x) \qquad \neq h(x), -h(x)$$

$$= -f(x) \qquad \text{Therefore } g \text{ is even.}$$

A function *f* is called even if f(-x) = f(x) for all *x* in its domain. A function *f* is called odd if f(-x) = -f(x) for all *x* in its domain.

Example (Example 11, p. 19)

Determine whether each of the following functions is even, odd, or neither even nor odd.

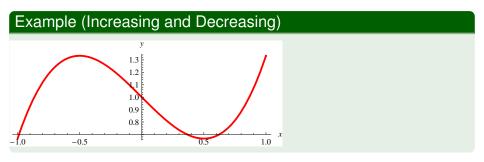
$$\begin{array}{rll} f(x) = x^5 + x & g(x) = 1 - x^4 & h(x) = 2x - 1 \\ f(-x) = (-x)^5 + (-x) & g(-x) = 1 - (-x)^4 & h(-x) = 2(-x) - 1 \\ = -x^5 - x & = 1 - x^4 & = -2x - 1 \\ = -(x^5 + x) & = g(x) & \neq h(x), -h(x) \\ = -f(x) & \text{Therefore } g \text{ is even.} & \text{Therefore } h \text{ is neither} \end{array}$$

Therefore *f* is odd.

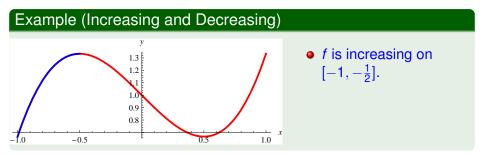
Therefore *h* is neither even nor odd.

Definition (Increasing and Decreasing Functions)

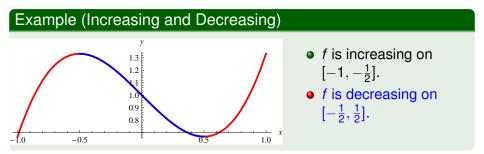
Definition (Increasing and Decreasing Functions)



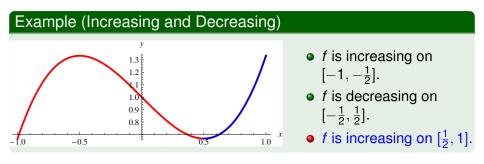
Definition (Increasing and Decreasing Functions)



Definition (Increasing and Decreasing Functions)



Definition (Increasing and Decreasing Functions)



A Note on Domains of Functions

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

A Note on Domains of Functions

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

Can't divide by 0.

A Note on Domains of Functions

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

- Can't divide by 0.
- Even roots of a negative number are not defined in this course $(\sqrt{-1}, \sqrt[4]{-2053}, \sqrt[6]{-15} \dots$ not allowed).

A Note on Domains of Functions

If the domain of a function isn't specified, it is implied to be all numbers x for which the formula f(x) is defined. There are some restrictions to consider:

- Can't divide by 0.
- Even roots of a negative number are not defined in this course $(\sqrt{-1}, \sqrt[4]{-2053}, \sqrt[6]{-15} \dots$ not allowed).
- Taking log x if x ≤ 0 is not allowed in this course; taking log 0 is not allowed in any course.

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

• Any risk of dividing by 0?

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

• Any risk of dividing by 0? No.

Find the implied domains of the following two functions: $g(x) = \frac{x^2 - 9}{x^2 - x - 6}$

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

 Any risk of taking the even root of a negative number?

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

• Any risk of taking the even root of a negative number? Yes.

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$x-2 \geq 0$$

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2&\geq&0\ x&\geq&2 \end{array}$$

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2&\geq&0\ x&\geq&2 \end{array}$$

Domain is all real numbers greater than or equal to 2; that is, $[2, \infty)$.

 $g(x)=\frac{x^2-9}{x^2-x-6}$

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2&\geq&0\ x&\geq&2 \end{array}$$

Domain is all real numbers greater than or equal to 2; that is, $[2, \infty)$.

• Any risk of dividing by 0?

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2&\geq&0\ x&\geq&2 \end{array}$$

Domain is all real numbers greater than or equal to 2; that is, $[2, \infty)$.

• Any risk of dividing by 0? Yes.

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number?

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2&\geq&0\ x&\geq&2 \end{array}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.
- $x^2 x 6$ must not equal 0.

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2&\geq&0\ x&\geq&2 \end{array}$$

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.

•
$$x^2 - x - 6$$
 must not equal 0.

$$x^2-x-6 \neq 0$$

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.

•
$$x^2 - x - 6$$
 must not equal 0.

$$x^2-x-6 \neq 0$$

$$(x-3)(x+2) \neq 0$$

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.

•
$$x^2 - x - 6$$
 must not equal 0.

$$x^2-x-6 \neq 0$$

$$(x-3)(x+2) \neq 0$$

$$x \neq 3 \text{ or } -2$$

Find the implied domains of the following two functions:

$$f(x) = \sqrt[4]{x-2} + \sqrt[3]{6-x}$$

- Any risk of dividing by 0? No.
- Any risk of taking the even root of a negative number? Yes.
- x 2 must not be negative.

$$egin{array}{ccc} x-2&\geq&0\ x&\geq&2 \end{array}$$

Domain is all real numbers greater than or equal to 2; that is, $[2, \infty)$.

 $(x-3)(x+2) \neq 0$ $x \neq 3 \text{ or } -2$

Domain is all real numbers except 3 and -2; that is, $(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$.

$$g(x) = \frac{x^2 - 9}{x^2 - x - 6}$$

- Any risk of dividing by 0? Yes.
- Any risk of taking the even root of a negative number? No.

•
$$x^2 - x - 6$$
 must not equal 0.

 $x^2 - x - 6 \neq 0$

FreeCalc Math 140

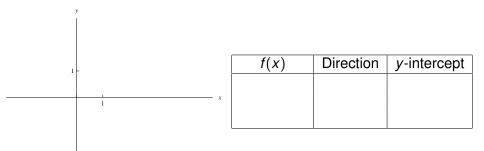
Linear Functions

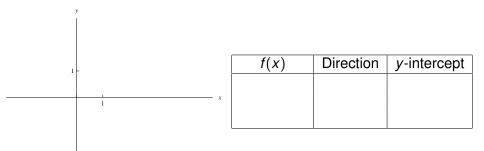
Definition (Linear Function)

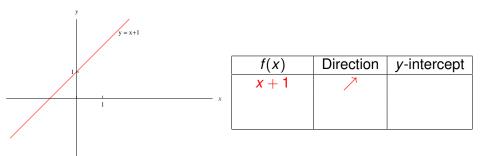
A linear function is a function the graph of which is a line. We can write any linear function in slope-intercept form:

$$f(x)=mx+b.$$

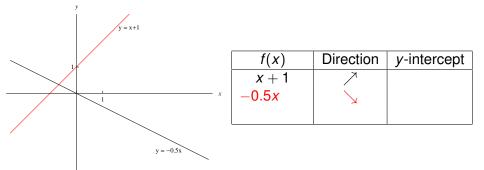
m is called the slope, and *b* is called the *y*-intercept.



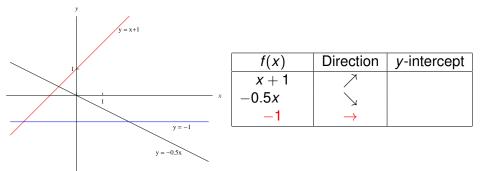




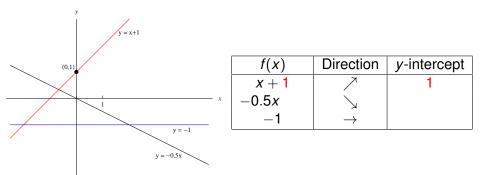
• m > 0 means the graph of f points up (\nearrow).



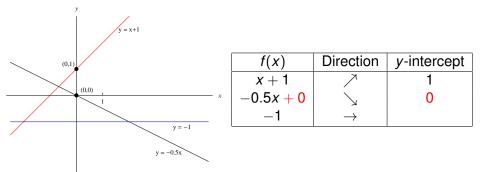
- m > 0 means the graph of f points up (\nearrow).
- m < 0 means the graph of *f* points down (\searrow).



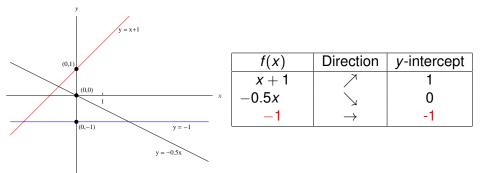
- m > 0 means the graph of f points up (\nearrow).
- m < 0 means the graph of *f* points down (\searrow).
- m = 0 means the graph of *f* is horizontal (\rightarrow).



- m > 0 means the graph of f points up (\nearrow).
- m < 0 means the graph of *f* points down (\searrow).
- m = 0 means the graph of *f* is horizontal (\rightarrow).
- *b* tells us the height of the point where the graph hits the *y*-axis.



- m > 0 means the graph of f points up (\nearrow).
- m < 0 means the graph of *f* points down (\searrow).
- m = 0 means the graph of *f* is horizontal (\rightarrow).
- *b* tells us the height of the point where the graph hits the *y*-axis.



- m > 0 means the graph of f points up (\nearrow).
- m < 0 means the graph of f points down (\searrow).
- m = 0 means the graph of *f* is horizontal (\rightarrow).
- *b* tells us the height of the point where the graph hits the *y*-axis.

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

where *n* is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer *n* is called the degree of *f*.

If we interpret x as an indeterminate formal expression, rather than a number, we say that f(x) is a polynomial (rather than a polynomial function).

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$					
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$					
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes				
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes				
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4			
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	<i>a</i> 0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4			
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	<i>a</i> 0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1		
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	<i>a</i> ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1		
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a 1	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	a 2
$x^4 - x + 1$	Yes	4	1	- 1	
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	a 2
$x^4 - x + 1$	Yes	4	1	- 1	0
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6					
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes				
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes				
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0			
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	<i>a</i> 0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0			
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	<i>a</i> 0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6		
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a 1	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6		
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a 1	a_2
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$\begin{vmatrix} 3x^2 - \frac{1}{2}x + \sqrt{x} \\ 3x^2 - \frac{1}{2}x + \sqrt{2} \end{vmatrix}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	a 2
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	a 2
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$					
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$					
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes				
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes				
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2			
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2			
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	<i>a</i> 0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$		
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a 1	a_2
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$		
$3x^2 - \frac{1}{2x} + \sqrt{2}$					

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a 1	a_2
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	
$3x^2 - \frac{1}{2x} + \sqrt{2}$				_	

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	
$3x^2 - \frac{1}{2x} + \sqrt{2}$				_	

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	3
$3x^2 - \frac{1}{2x} + \sqrt{2}$				_	

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	3
$3x^2 - \frac{1}{2x} + \sqrt{2}$				_	

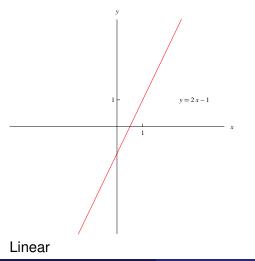
Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n,$$

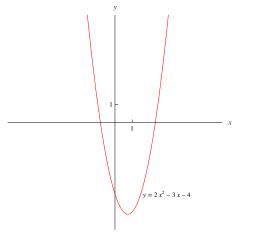
f(x)	Polynomial?	Degree	a_0	a ₁	<i>a</i> ₂
$x^4 - x + 1$	Yes	4	1	- 1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	3
$3x^2 - \frac{1}{2x} + \sqrt{2}$	No			_	

• Linear functions are polynomial (functions).



FreeCalc Math 140

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.



Quadratic

FreeCalc Math 140

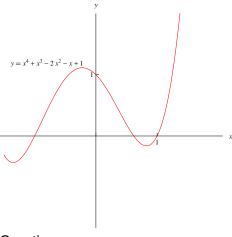
• Linear functions are polynomial (functions).

 $y = x^3 - 2x^2 + x + 1$

- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

х

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.



Quartic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

