

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

January 31

Outline

(1.2) A Catalog of Essential Functions

- Power Functions
- Rational Functions
- Algebraic Functions
- Transcendental Functions

Outline

(1.2) A Catalog of Essential Functions

- Power Functions
- Rational Functions
- Algebraic Functions
- Transcendental Functions

(1.3) New Functions from Old Functions

- Transformations of Functions
- Combinations of Functions

Definition (Power Function)

Let x > 0, *a* - arbitrary real number. The power function is defined as

$$f(x) = x^a$$

.

Definition (Power Function)

Let x > 0, *a* - arbitrary real number. The power function is defined as

$$f(x) = x^a$$

.

x = base.

Definition (Power Function)

Let x > 0, *a* - arbitrary real number. The power function is defined as

$$f(x) = x^{a}$$

.

x = base. a = exponent or power.

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a$$

.

x = base. a = exponent or power. First equality = one (the best) of ways to define for non-integer a (we study ln x, e^x later).

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a$$

.

x = base. a = exponent or power. First equality = one (the best) of ways to define for non-integer a (we study ln x, e^x later).

If *a* - positive integer (1, 2, 3, ...) then x^a = polynomial function.

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a$$

.

x = base. a = exponent or power. First equality = one (the best) of ways to define for non-integer a (we study ln x, e^x later).

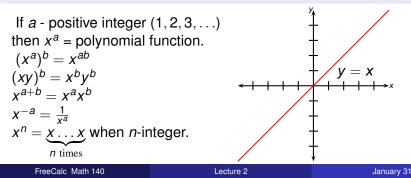
If *a* - positive integer (1, 2, 3, ...)then x^a = polynomial function. $(x^a)^b = x^{ab}$ $(xy)^b = x^by^b$ $x^{a+b} = x^ax^b$ $x^{-a} = \frac{1}{x^a}$ $x^n = \underbrace{x \dots x}_{n \text{ times}}$ when *n*-integer.

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a$$

x = base. a = exponent or power. First equality = one (the best) of ways to define for non-integer a (we study ln x, e^x later).

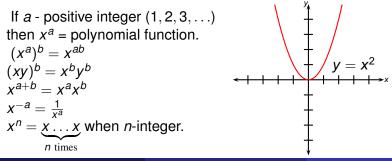


Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a$$

x = base. a = exponent or power. First equality = one (the best) of ways to define for non-integer a (we study ln x, e^x later).

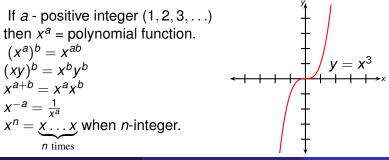


Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a$$

x = base. a = exponent or power. First equality = one (the best) of ways to define for non-integer a (we study ln x, e^x later).

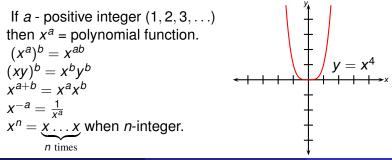


Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a$$

x = base. a = exponent or power. First equality = one (the best) of ways to define for non-integer a (we study ln x, e^x later).

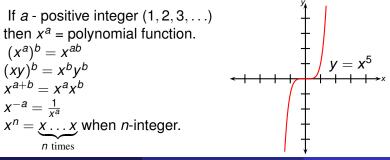


Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a$$

x = base. a = exponent or power. First equality = one (the best) of ways to define for non-integer a (we study ln x, e^x later).



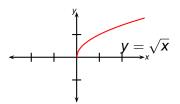
• *n* - positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the *n*th root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.

- *n* positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the *n*th root function. $\sqrt[n]{x} > 0$ for x > 0.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.

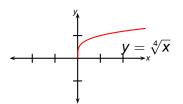
- *n* positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the *n*th root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by 2m+1/(-x) := -2m+1/(|x|).

- *n* positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the *n*th root function. $\sqrt[n]{x} > 0$ for x > 0.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by ${}^{2m+1}\sqrt{-x} := -{}^{2m+1}\sqrt{|x|}$.
- In this course, even roots of negative numbers are not defined (domain of even root function: $[0,\infty)$).

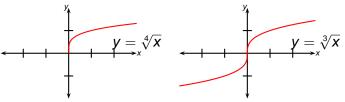
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by 2m+1/(-x) := -2m+1/(|x|).
- In this course, even roots of negative numbers are not defined (domain of even root function: [0,∞)).
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$.



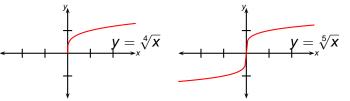
- For n = 2, we get the square root √x; for n = 3 we get the cube root ³√x, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by 2m+1/(-x) = -2m+1/(|x|).
- In this course, even roots of negative numbers are not defined (domain of even root function: [0,∞)).
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.



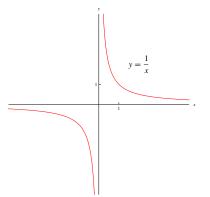
- *n* positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the *n*th root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by 2m+1/(-x) = -2m+1/(|x|).
- In this course, even roots of negative numbers are not defined (domain of even root function: [0,∞)).
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.
- The graph of the cube root $f(x) = \sqrt[3]{x}$ is the graph of the polynomial $x = y^3$.



- *n* positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the *n*th root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by 2m+1/(-x) = -2m+1/(|x|).
- In this course, even roots of negative numbers are not defined (domain of even root function: [0,∞)).
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.
- The graph of the cube root $f(x) = \sqrt[3]{x}$ is the graph of the polynomial $x = y^3$. Similarly for $y = \sqrt[2m+1]{x}$, we graph $x = y^{2m+1}$.



 $f(x) = x^{-1} = \frac{1}{x}$ is called the reciprocal function. Its graph has equation $y = \frac{1}{x}$, or xy = 1, and is an hyperbola with the coordinate axes as its asymptotes.



Rational Functions

Definition (Rational Function)

A rational function is a quotient of two polynomials; that is, a function of the form

$$f(x)=\frac{g(x)}{h(x)},$$

where g and h are polynomials.

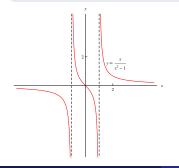
Rational Functions

Definition (Rational Function)

A rational function is a quotient of two polynomials; that is, a function of the form

$$f(x)=\frac{g(x)}{h(x)},$$

where g and h are polynomials.



Example
$$(x/(x^2 - 1))$$

The function

$$f(x)=\frac{x}{x^2-1}$$

is a rational function.

FreeCalc Math 140

Lecture 2

Algebraic Functions

Definition (Algebraic Function)

A function in *x* that can be constructed using *x*, constants, and finitely many of the operations +, -, *, /, and $\sqrt[n]{}$ is called an algebraic function.

Algebraic Functions

Definition (Algebraic Function)

A function in *x* that can be constructed using *x*, constants, and finitely many of the operations +, -, *, /, and $\sqrt[n]{}$ is called an algebraic function.

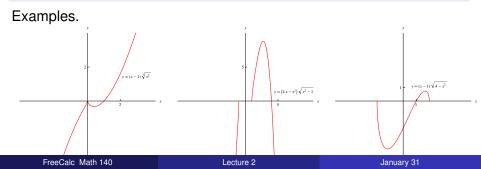
Outside of Calculus I: function f(x) = algebraic if it satisfies a polynomial equation with polynomial coefficients, i.e., $a_0(x) + a_1(x)f(x) + \cdots + a_n(x)(f(x))^n = 0$ for some polynomials $a_i(x)$.

Algebraic Functions

Definition (Algebraic Function)

A function in *x* that can be constructed using *x*, constants, and finitely many of the operations +, -, *, /, and $\sqrt[n]{}$ is called an algebraic function.

Outside of Calculus I: function f(x) = algebraic if it satisfies a polynomial equation with polynomial coefficients, i.e., $a_0(x) + a_1(x)f(x) + \cdots + a_n(x)(f(x))^n = 0$ for some polynomials $a_i(x)$.



Transcendental Functions

Transcendental functions include many classes of functions.

• Trigonometric functions such as cos *x*, sin *x*, tan *x*, etc.

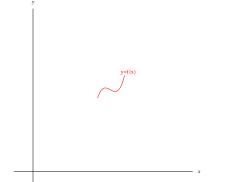
- Trigonometric functions such as cos *x*, sin *x*, tan *x*, etc.
- Exponential functions such as 2^x , $(\frac{1}{2})^x$, 5^x , e^x , etc.

- Trigonometric functions such as cos *x*, sin *x*, tan *x*, etc.
- Exponential functions such as 2^{x} , $\left(\frac{1}{2}\right)^{x}$, 5^{x} , e^{x} , etc.
- The logarithm function ln x.

- Trigonometric functions such as cos *x*, sin *x*, tan *x*, etc.
- Exponential functions such as 2^x , $(\frac{1}{2})^x$, 5^x , e^x , etc.
- The logarithm function ln x.
- And many more.

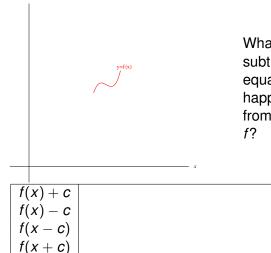
- Trigonometric functions such as cos *x*, sin *x*, tan *x*, etc.
- Exponential functions such as 2^x , $\left(\frac{1}{2}\right)^x$, 5^x , e^x , etc.
- The logarithm function ln x.
- And many more.
- Outside of Calculus I: by definition, a function is transcendental if it is not algebraic, i.e., if it satisfies no polynomial equation with polynomial coefficients.

Transformations of Functions

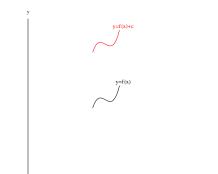


What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract cfrom x before applying the function f?

Transformations of Functions

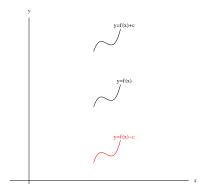


What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract cfrom x before applying the function f?



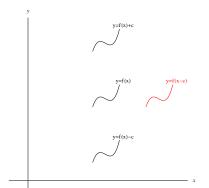
What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract cfrom x before applying the function f?

f(x) + c	Shift the graph of $f(x) c$ units up.
f(x) - c	
f(x-c)	
f(x+c)	



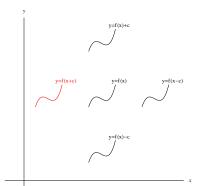
What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract cfrom x before applying the function f?

f(x) + cShift the graph of f(x) c units up.f(x) - cShift the graph of f(x) c units down.f(x - c)f(x + c)



What happens if we add or subtract a positive constant c in the equation of a function f? What happens if we add or subtract cfrom x before applying the function f?

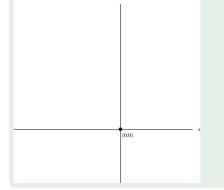
f(x) + cShift the graph of f(x) c units up.f(x) - cShift the graph of f(x) c units down.f(x - c)Shift the graph of f(x) c units right.f(x + c)Shift the graph of f(x) c units right.



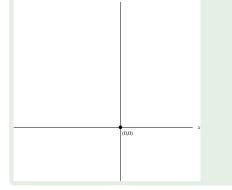
What happens if we add or subtract a positive constant *c* in the equation of a function *f*? What happens if we add or subtract *c* from *x* before applying the function *f*?

f(x) + cShift the graph of f(x) c units up.f(x) - cShift the graph of f(x) c units down.f(x - c)Shift the graph of f(x) c units right.f(x + c)Shift the graph of f(x) c units left.

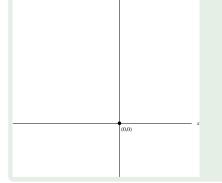
Draw a graph of the function $f(x) = x^2 + 6x + 10$.



Draw a graph of the function $f(x) = x^2 + 6x + 10$.



Draw a graph of the function $f(x) = x^2 + 6x + 10$.



$$f(x) = x^2 + 6x + 10$$

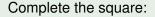
(0.0)

Draw a graph of the function $f(x) = x^2 + 6x + 10$.

$$f(x) = x^2 + 6x + 10 = (x^2 + 6x) + 10$$

(0.0)

Draw a graph of the function $f(x) = x^2 + 6x + 10$.



$$f(x) = x^2 + 6x + 10$$

= $(x^2 + 6x + 9) + 10 - 9$

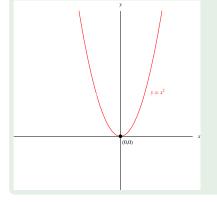
(0.0)

Draw a graph of the function $f(x) = x^2 + 6x + 10$.

$$f(x) = x^{2} + 6x + 10$$

= $(x^{2} + 6x + 9) + 10 - 9$
= $(x + 3)^{2} + 1$

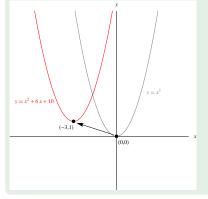
Draw a graph of the function $f(x) = x^2 + 6x + 10$.



$$f(x) = x^{2} + 6x + 10$$

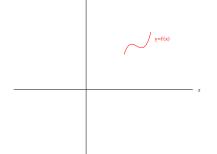
= $(x^{2} + 6x + 9) + 10 - 9$
= $(x + 3)^{2} + 1$

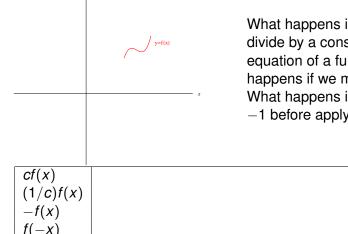
Draw a graph of the function $f(x) = x^2 + 6x + 10$.

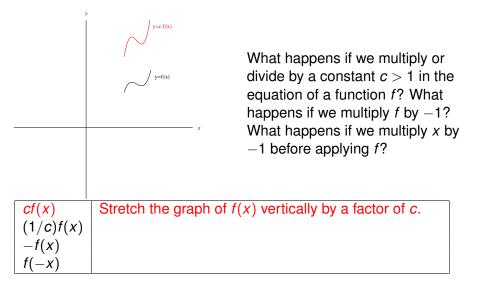


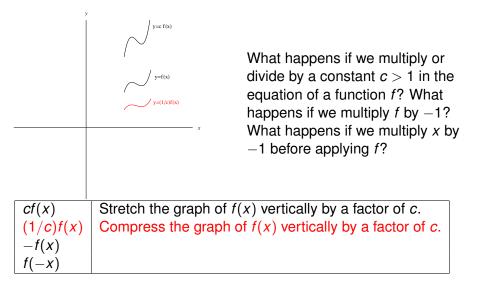
$$f(x) = x^{2} + 6x + 10$$

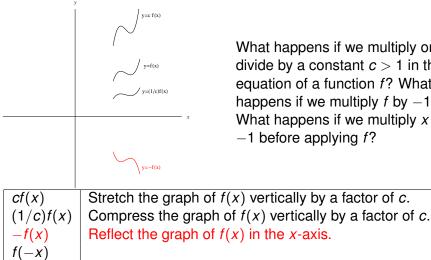
= $(x^{2} + 6x + 9) + 10 - 9$
= $(x + 3)^{2} + 1$

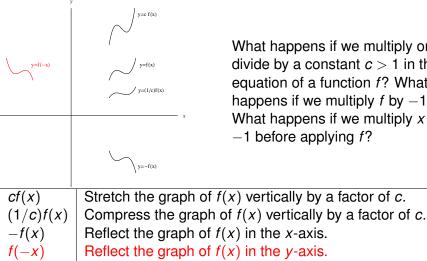


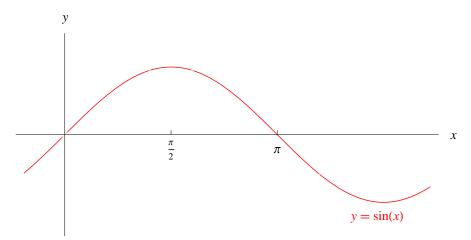


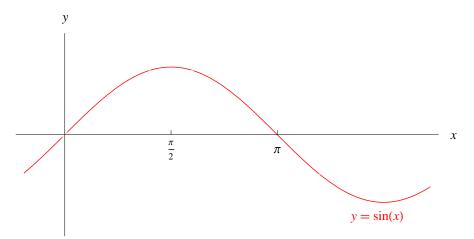




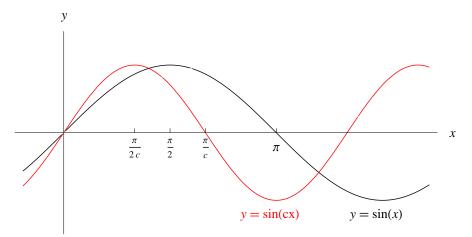




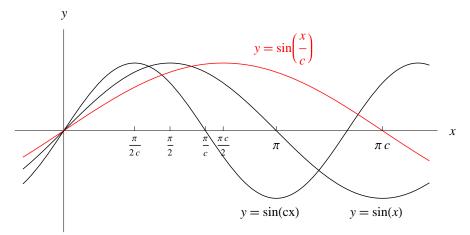




f(cx)	
f((1/c)x)	



f(cx)Compress the graph of f(x) horizontally by a factor of c.f((1/c)x)



f(cx)Compress the graph of f(x) horizontally by a factor of c.f((1/c)x)Stretch the graph of f(x) horizontally by a factor of c.

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

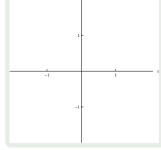
This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

$$|f(x)| = \left\{ egin{array}{ccc} f(x) & \mathrm{if} & f(x) \geq 0 \\ -f(x) & \mathrm{if} & f(x) < 0 \end{array}
ight.$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

Example (Example 5, p. 41)

Draw the graph of the function $f(x) = |x^2 - 1|$.

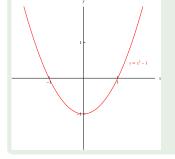


$$|f(x)| = \left\{ egin{array}{ccc} f(x) & \mathrm{if} & f(x) \geq 0 \\ -f(x) & \mathrm{if} & f(x) < 0 \end{array}
ight.$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

Example (Example 5, p. 41)

Draw the graph of the function $f(x) = |x^2 - 1|$.



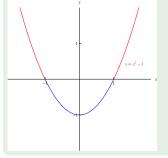
• Draw the graph of $f(x) = x^2 - 1$.

$$|f(x)| = \left\{ egin{array}{ccc} f(x) & \mathrm{if} & f(x) \geq 0 \\ -f(x) & \mathrm{if} & f(x) < 0 \end{array}
ight.$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

Example (Example 5, p. 41)

Draw the graph of the function
$$f(x) = |x^2 - 1|$$
.



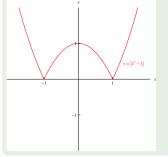
- Draw the graph of $f(x) = x^2 1$.
- Identify the part(s) below the *x*-axis.

$$|f(x)| = \left\{ egin{array}{ccc} f(x) & \mathrm{if} & f(x) \geq 0 \\ -f(x) & \mathrm{if} & f(x) < 0 \end{array}
ight.$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

Example (Example 5, p. 41)

Draw the graph of the function
$$f(x) = |x^2 - 1|$$
.



- Draw the graph of $f(x) = x^2 1$.
- Identify the part(s) below the *x*-axis.
- Flip those parts over the *x*-axis.

Combinations of Functions

Two functions *f* and *g* can be combined to form new functions f + g, f - g, fg, and f/g. The sum and difference functions are defined by the formulas

$$(f+g)(x) = f(x) + g(x), \qquad (f-g)(x) = f(x) - g(x).$$

If *A* is the domain of *f* and *B* is the domain of *g*, then the domain of f + g and f - g is $A \cap B$, the intersection of *A* and *B*. The product and quotient functions are defined by the formulas

$$(fg)(x) = f(x)g(x), \qquad \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$$

These functions also have the domain $A \cap B$, with one exception: in the quotient function, we aren't allowed to divide by 0, so we must exclude those values of *x* that make g(x) = 0. We write this domain as

$$\{x\in A\cap B| g(x)\neq 0\}.$$

Definition (Composition of *f* and *g*)

If *f* and *g* are two functions, then the composition of *f* and *g* is written $f \circ g$ and is defined by the formula

 $(f \circ g)(x) = f(g(x)).$

Imagine *f* and *g* as machines taking some input and producing some output. Then $f \circ g$ corresponds to attaching both machines end-to-end so that the output of *g* becomes the input of *f*.

$$x \rightarrow g \rightarrow g(x) \rightarrow f(g((x))$$

Definition (Composition of *f* and *g*)

If *f* and *g* are two functions, then the composition of *f* and *g* is written $f \circ g$ and is defined by the formula

 $(f \circ g)(x) = f(g(x)).$

Imagine *f* and *g* as machines taking some input and producing some output. Then $f \circ g$ corresponds to attaching both machines end-to-end so that the output of *g* becomes the input of *f*.

$$x \rightarrow g \rightarrow g(x) \rightarrow f(g((x))$$

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f. If the domain of f is A and the domain of g is B, we write this as

$$\{x\in B|\ g(x)\in A\}.$$

$$f \circ g$$
 $g \circ f$ $g \circ g$

$$f \circ g$$
 $g \circ f$ $g \circ g$
 $(f \circ g)(x)$

$$egin{array}{ccc} f\circ g & g\circ f & g\circ g \ (f\circ g)(x) \ f(g(x)) \end{array} \end{array}$$

$$f \circ g$$
 $g \circ f$ $g \circ g$ $(f \circ g)(x)$ $f(g(x))$ $f(\sqrt{2-x})$

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{2-x}) = \sqrt{\sqrt{2-x}}$$

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{2-x}) = \sqrt{\sqrt{2-x}} = \sqrt[4]{2-x}$$

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x)$$

$$= f(g(x))$$

$$= f(\sqrt{2-x})$$

$$= \sqrt{\sqrt{2-x}}$$

$$= \sqrt[4]{2-x}$$
Domain :
$$(-\infty, 2].$$

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x)$$

$$= f(g(x))$$

$$= f(\sqrt{2-x})$$

$$= \sqrt{\sqrt{2-x}}$$
Domain :
$$(-\infty, 2].$$

$$f \circ g \qquad g \circ f \qquad g \circ g$$

$$(f \circ g)(x) \qquad (g \circ f)(x)$$

$$= f(g(x)) \qquad = g(f(x))$$

$$= \sqrt{\sqrt{2-x}}$$

$$= \sqrt[4]{2-x}$$
Domain :
$$(-\infty, 2].$$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2 - x}$, find each function and its domain.

$$f \circ g \qquad g \circ f (f \circ g)(x) \qquad (g \circ f)(x) = f(g(x)) \qquad = g(f(x)) = f(\sqrt{2-x}) \qquad = g(\sqrt{x}) = \sqrt{\sqrt{2-x}} = \sqrt[4]{2-x} Domain : (-\infty, 2].$$

 $g \circ g$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2 - x}$, find each function and its domain.

	$f \circ g$		$\boldsymbol{g}\circ \boldsymbol{f}$
	$(f \circ g)(x)$		$(g \circ f)(x)$
=	f(g(x))	=	g(f(x))
=	$f(\sqrt{2-x})$	=	$g(\sqrt{x})$
_	$\sqrt{\sqrt{2-x}}$	=	$\sqrt{2-\sqrt{x}}$
_	$\sqrt[4]{2-x}$		
	Domain :		
	$(-\infty, 2].$		

 $g \circ g$

If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{2 - x}$, find each function and its domain.

	$f \circ g$		$\boldsymbol{g}\circ \boldsymbol{f}$
	$(f \circ g)(x)$		$(g \circ f)(x)$
=	f(g(x))	=	g(f(x))
=	$f(\sqrt{2-x})$	=	$g(\sqrt{x})$
=	$\sqrt{\sqrt{2-x}}$	=	$\sqrt{2-\sqrt{x}}$
=	$\sqrt[4]{2-x}$		Domain :
	Domain :		[0,4].
	(−∞, 2].		

 $g \circ g$

	$f \circ g$		$\boldsymbol{g}\circ \boldsymbol{f}$	$oldsymbol{g} \circ oldsymbol{g}$
	$(f \circ g)(x)$		$(g \circ f)(x)$	$(g \circ g)(x)$
=	f(g(x))	=	g(f(x))	
=	$f(\sqrt{2-x})$	=	$g(\sqrt{x})$	
=	$\sqrt{\sqrt{2-x}}$	=	$\sqrt{2-\sqrt{x}}$	
=	$\sqrt[4]{2-x}$		Domain :	
	Domain :		[0,4].	
	$(-\infty, 2].$			

	$f \circ g$		$\boldsymbol{g}\circ \boldsymbol{f}$		$oldsymbol{g}\circoldsymbol{g}$
	$(f \circ g)(x)$		$(g \circ f)(x)$		$(g \circ g)(x)$
=	f(g(x))	=	g(f(x))	=	g(g(x))
=	$f(\sqrt{2-x})$	=	$g(\sqrt{x})$		
=	$\sqrt{\sqrt{2-x}}$	=	$\sqrt{2-\sqrt{x}}$		
=	$\sqrt[4]{2-x}$		Domain :		
	Domain :		[0,4].		
	$(-\infty, 2].$				

	$f \circ g$		$\boldsymbol{g}\circ \boldsymbol{f}$		$oldsymbol{g}\circoldsymbol{g}$
	$(f \circ g)(x)$		$(g \circ f)(x)$		$(g \circ g)(x)$
=	f(g(x))	=	g(f(x))	=	g(<mark>g(x)</mark>)
=	$f(\sqrt{2-x})$	=	$g(\sqrt{x})$	=	$g(\sqrt{2-x})$
=	$\sqrt{\sqrt{2-x}}$	=	$\sqrt{2-\sqrt{x}}$		
=	$\sqrt[4]{2-x}$		Domain :		
	Domain :		[0,4].		
	$(-\infty, 2].$				

	$f \circ g$		$g \circ f$		$oldsymbol{g}\circoldsymbol{g}$
	$(f \circ g)(x)$		$(g \circ f)(x)$		$(g \circ g)(x)$
=	f(g(x))	=	g(f(x))	=	g(g(x))
=	$f(\sqrt{2-x})$	=	$g(\sqrt{x})$	=	$g(\sqrt{2-x})$
=	$\sqrt{\sqrt{2-x}}$	=	$\sqrt{2-\sqrt{x}}$	=	$\sqrt{2-\sqrt{2-x}}$
=	$\sqrt[4]{2-x}$		Domain :		
	Domain :		[0,4].		
	(−∞, 2].				

	$f \circ g$		$g\circ f$		$\boldsymbol{g}\circ \boldsymbol{g}$
	$(f \circ g)(x)$		$(g \circ f)(x)$		$(g \circ g)(x)$
=	f(g(x))	=	g(f(x))	=	g(g(x))
=	$f(\sqrt{2-x})$	=	$g(\sqrt{x})$	=	$g(\sqrt{2-x})$
_	$\sqrt{\sqrt{2-x}}$	=	$\sqrt{2-\sqrt{x}}$	=	$\sqrt{2-\sqrt{2-x}}$
=	$\sqrt[4]{2-x}$		Domain :		Domain :
	Domain :		[0,4].		[-2,2].
	(−∞,2].				