

**Greg Maloney** 

with modifications by T. Milev

University of Massachusetts Boston

February 5, 2013



# (Appendix C) Trigonometry

- Angles
- The Trigonometric Functions
- Trigonometric Identities
- Graphs of the Trigonometric Functions

# Angles

Angles can be measured in degrees or radians (abbreviated as rad). The angle of a complete rotation contains 360°, which is the same as  $2\pi$  rad. Therefore

 $\pi$  rad = 180°.

# Angles

Angles can be measured in degrees or radians (abbreviated as rad). The angle of a complete rotation contains 360°, which is the same as  $2\pi$  rad. Therefore

 $\pi$  rad = 180°.

1 rad 
$$=\left(\frac{180}{\pi}\right)^{\circ} \approx 57.3^{\circ}, \qquad 1^{\circ} = \frac{\pi}{180}$$
 rad  $\approx 0.017$  rad.

# Angles

Angles can be measured in degrees or radians (abbreviated as rad). The angle of a complete rotation contains 360°, which is the same as  $2\pi$  rad. Therefore

$$\pi$$
 rad = 180°.

1 rad 
$$=\left(\frac{180}{\pi}\right)^{\circ} \approx 57.3^{\circ}, \qquad 1^{\circ} = \frac{\pi}{180}$$
 rad  $\approx 0.017$  rad.

The following table shows the correspondence between degrees and radians for some common angles.

| Deg. | <b>0</b> ° | 30°             | 45°             | 60°             | 90°             | 120°             | 135°             | 150°             | 180°  | 270°             | 360°       |
|------|------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|-------|------------------|------------|
| Rad. | 0          | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$ | $\frac{3\pi}{4}$ | $\frac{5\pi}{6}$ | $\pi$ | $\frac{3\pi}{2}$ | <b>2</b> π |

# The Trigonometric Functions







Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \cos \frac{2\pi}{3} = \tan \frac{2\pi}{3}$$
$$\csc \frac{2\pi}{3} = \sec \frac{2\pi}{3} = \cot \frac{2\pi}{3}$$





Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \cos \frac{2\pi}{3} = \tan \frac{2\pi}{3}$$
$$\csc \frac{2\pi}{3} = \sec \frac{2\pi}{3} = \cot \frac{2\pi}{3}$$



$$\operatorname{sc} \frac{2\pi}{3} =$$

Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

 $2\pi$ 

$$\ln \frac{2\pi}{3} = \cos \frac{2\pi}{3} = \tan \frac{2\pi}{3} =$$

$$\ln \frac{2\pi}{3} = \cos \frac{2\pi}{3} = \cos \frac{2\pi}{3} = \cos \frac{2\pi}{3} =$$

FreeCalc Math 140

C



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\tan \frac{2\pi}{3} = \cot \frac{2\pi}{3} =$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \qquad \cos \frac{2\pi}{3} = \qquad \text{ta}$$
$$\csc \frac{2\pi}{3} = \qquad \sec \frac{2\pi}{3} = \qquad \cos \frac{2\pi}{3} = \qquad \cos$$

$$\tan\frac{2\pi}{3} = \cot\frac{2\pi}{3} = 0$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\tan\frac{2\pi}{3} = \cot\frac{2\pi}{3} =$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \qquad \cos \frac{2\pi}{3} = -\frac{1}{2} \qquad \tan \frac{2\pi}{3} = \\ \csc \frac{2\pi}{3} = \qquad \sec \frac{2\pi}{3} = \qquad \cot \frac{2\pi}{3} =$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \qquad \cos \frac{2\pi}{3} = -\frac{1}{2} \qquad \tan \frac{2\pi}{3} = \\ \csc \frac{2\pi}{3} = \qquad \sec \frac{2\pi}{3} = \qquad \cot \frac{2\pi}{3} =$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin rac{2\pi}{3} = rac{\sqrt{3}}{2} \qquad \cos rac{2\pi}{3} = -rac{1}{2} \ \csc rac{2\pi}{3} = \qquad \sec rac{2\pi}{3} =$$

 $\tan \frac{2\pi}{3} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$  $\cot \frac{2\pi}{3} =$ 



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\frac{\pi}{3} = \frac{\sqrt{3}}{2} \qquad \cos\frac{2\pi}{3} = -\frac{1}{2} \qquad \qquad \tan\frac{2\pi}{3} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\frac{\pi}{3} = \qquad \qquad \sec\frac{2\pi}{3} = \qquad \qquad \cot\frac{2\pi}{3} =$$

FreeCalc Math 140

sin -

csc



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \qquad \cos \frac{2\pi}{3} = -\frac{1}{2}$$
$$\csc \frac{2\pi}{3} = \frac{2}{\sqrt{3}} \qquad \sec \frac{2\pi}{3} = -\frac{1}{2}$$

$$\tan \frac{2\pi}{3} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\cot \frac{2\pi}{3} =$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$$
  $\cos \frac{2\pi}{3} = -\frac{1}{2}$  ta  
 $\csc \frac{2\pi}{3} = \frac{2}{\sqrt{3}}$   $\sec \frac{2\pi}{3} = -\frac{1}{2}$  co

$$\tan \frac{2\pi}{3} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\cot \frac{2\pi}{3} =$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \qquad \cos \frac{2\pi}{3} = -\frac{1}{2} \qquad \tan \frac{2\pi}{3} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\csc \frac{2\pi}{3} = \frac{2}{\sqrt{3}} \qquad \sec \frac{2\pi}{3} = -\frac{2}{1} = -2 \qquad \cot \frac{2\pi}{3} =$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \qquad \cos \frac{2\pi}{3} = -\frac{1}{2} \qquad \tan \frac{2\pi}{3} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\csc \frac{2\pi}{3} = \frac{2}{\sqrt{3}} \qquad \sec \frac{2\pi}{3} = -\frac{2}{1} = -2 \qquad \cot \frac{2\pi}{3} =$$



Find the exact trigonometric ratios for  $\theta = 2\pi/3 = 120^{\circ}$ .

$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2} \qquad \cos \frac{2\pi}{3} = -\frac{1}{2} \qquad \tan \frac{2\pi}{3} = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\csc \frac{2\pi}{3} = \frac{2}{\sqrt{3}} \qquad \sec \frac{2\pi}{3} = -\frac{2}{1} = -2 \qquad \cot \frac{2\pi}{3} = -\frac{1}{\sqrt{3}}$$

FreeCalc Math 140

February 5, 2013



| FreeCalc | Math | 140 |
|----------|------|-----|
|----------|------|-----|

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

• Label the hypotenuse with length 5 and the adjacent side with length 2.



 $\mathbf{x} =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

• Label the hypotenuse with length 5 and the adjacent side with length 2.

• Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

$$\sin \theta = \tan \theta =$$

$$\csc \theta = \qquad \sec \theta =$$

 $\cot \theta =$ 

 $\mathbf{X} =$ 

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .



- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 =$$
, so  $x =$ 

 $\sin \theta = \tan \theta =$ 

 $\csc\theta = \qquad \quad \sec\theta =$ 

 $\cot \theta =$ 

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ . Label the hypotenuse with length 5 and the adjacent side with length 2. • Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .  $x = \sqrt{21}$ • Therefore  $x^2 = 21$ , so  $x = \sqrt{21}$ . 5  $\sin \theta =$  $\tan \theta =$  $\csc \theta =$  $\sec\theta =$ 

 $\cot \theta =$ 

2

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

 $\sin \theta = \tan \theta =$ 

$$\csc\theta = \qquad \quad \sec\theta =$$

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

 $\sin\theta = \frac{\sqrt{21}}{5}$   $\tan\theta =$ 

$$\csc \theta = \sec \theta =$$

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

$$\sin \theta = \frac{\sqrt{21}}{5}$$
  $\tan \theta =$ 

$$\csc\theta = \qquad \quad \sec\theta =$$

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

$$\sin \theta = \frac{\sqrt{21}}{5}$$
  $\tan \theta = \frac{\sqrt{21}}{2}$ 

$$\csc\theta = \qquad \quad \sec\theta =$$

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

$$\sin\theta = \frac{\sqrt{21}}{5} \quad \tan\theta = \frac{\sqrt{21}}{2}$$

 $\csc \theta = \sec \theta =$ 

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

$$\sin \theta = \frac{\sqrt{21}}{5}$$
  $\tan \theta = \frac{\sqrt{21}}{2}$ 

$$\csc \theta = \frac{5}{\sqrt{21}}$$
  $\sec \theta =$ 

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

$$\sin \theta = \frac{\sqrt{21}}{5}$$
  $\tan \theta = \frac{\sqrt{21}}{2}$ 

$$\csc \theta = \frac{5}{\sqrt{21}}$$
  $\sec \theta =$ 

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

$$\sin \theta = \frac{\sqrt{21}}{5}$$
  $\tan \theta = \frac{\sqrt{21}}{2}$ 

$$\csc \theta = \frac{5}{\sqrt{21}}$$
  $\sec \theta = \frac{5}{2}$ 

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

$$\sin \theta = \frac{\sqrt{21}}{5}$$
  $\tan \theta = \frac{\sqrt{21}}{2}$ 

$$\csc \theta = \frac{5}{\sqrt{21}}$$
  $\sec \theta = \frac{5}{2}$ 

 $\cot \theta =$ 

5

2

If  $\cos \theta = \frac{2}{5}$  and  $0 < \theta < \pi/2$ , find the other five trigonometric functions of  $\theta$ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem:  $x^2 + 2^2 = 5^2$ .

• Therefore 
$$x^2 = 21$$
, so  $x = \sqrt{21}$ .

$$\sin \theta = \frac{\sqrt{21}}{5}$$
  $\tan \theta = \frac{\sqrt{21}}{2}$ 

$$\csc \theta = \frac{5}{\sqrt{21}}$$
  $\sec \theta = \frac{5}{2}$ 

$$\cot \theta = \frac{2}{\sqrt{21}}$$
## **Trigonometric Identities**

## Definition (Trigonometric Identity)

A trigonometric identity is a relationship among the trigonometric functions that is true for any value of the independent variable.



$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y} \\
 \cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x} \\
 \tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

• 
$$\csc \theta = \frac{1}{\sin \theta}$$

• sec 
$$\theta = \frac{1}{\cos \theta}$$

• 
$$\cot \theta = \frac{1}{\tan \theta}$$

• 
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

• 
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$



$$\begin{aligned} \sin\theta &= \frac{y}{r} \quad \csc\theta &= \frac{r}{y} \\ \cos\theta &= \frac{x}{r} \quad \sec\theta &= \frac{r}{x} \\ \tan\theta &= \frac{y}{x} \quad \cot\theta &= \frac{x}{y} \end{aligned}$$



$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y} \\
 \cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x} \\
 \tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sin^2\theta + \cos^2\theta$$



$$= \frac{\sin^2 \theta + \cos^2 \theta}{r^2} + \frac{x^2}{r^2}$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y} \\
 \cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x} \\
 \tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$



$$= \frac{\sin^2 \theta + \cos^2 \theta}{r^2}$$
$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$
$$= \frac{y^2 + x^2}{r^2}$$

$$\begin{aligned} \sin \theta &= \frac{y}{r} \quad \csc \theta &= \frac{r}{y} \\ \cos \theta &= \frac{x}{r} \quad \sec \theta &= \frac{r}{x} \\ \tan \theta &= \frac{y}{x} \quad \cot \theta &= \frac{x}{y} \end{aligned}$$



$$= \frac{\sin^2 \theta + \cos^2 \theta}{r^2 + \frac{x^2}{r^2}}$$
$$= \frac{y^2 + x^2}{r^2}$$
$$= \frac{r^2}{r^2}$$

$$\begin{aligned} \sin\theta &= \frac{y}{r} \quad \csc\theta &= \frac{r}{y} \\ \cos\theta &= \frac{x}{r} \quad \sec\theta &= \frac{r}{x} \\ \tan\theta &= \frac{y}{x} \quad \cot\theta &= \frac{x}{y} \end{aligned}$$



$$\sin^2 \theta + \cos^2 \theta$$

$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$

$$= \frac{y^2 + x^2}{r^2}$$

$$= \frac{r^2}{r^2}$$

$$= 1$$

$$\begin{aligned} \sin \theta &= \frac{y}{r} \quad \csc \theta &= \frac{r}{y} \\ \cos \theta &= \frac{x}{r} \quad \sec \theta &= \frac{r}{x} \\ \tan \theta &= \frac{y}{x} \quad \cot \theta &= \frac{x}{y} \end{aligned}$$



$$\begin{aligned} \sin \theta &= \frac{y}{r} \quad \csc \theta &= \frac{r}{y} \\ \cos \theta &= \frac{x}{r} \quad \sec \theta &= \frac{x}{x} \\ \tan \theta &= \frac{y}{x} \quad \cot \theta &= \frac{x}{y} \end{aligned}$$

$$\sin^2 \theta + \cos^2 \theta$$

$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$

$$= \frac{y^2 + x^2}{r^2}$$

$$= \frac{r^2}{r^2}$$

$$= 1$$

Therefore  $\sin^2 \theta + \cos^2 \theta = 1$ .



Example 
$$(\tan^2 \theta + 1 = \sec^2 \theta)$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y} \\
 \cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x} \\
 \tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$



Example 
$$(\tan^2 \theta + 1 = \sec^2 \theta)$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y} \\
 \cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x} \\
 \tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$



$$\begin{aligned} \sin \theta &= \frac{y}{r} \quad \csc \theta &= \frac{r}{y} \\ \cos \theta &= \frac{x}{r} \quad \sec \theta &= \frac{r}{x} \\ \tan \theta &= \frac{y}{x} \quad \cot \theta &= \frac{x}{y} \end{aligned}$$

Example  $(\tan^2 \theta + 1 = \sec^2 \theta)$ 

$$\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta} = 1$$
$$\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$$



$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y} \\
 \cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x} \\
 \tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

Example  $(\tan^2 \theta + 1 = \sec^2 \theta)$ 

$$\begin{aligned} \sin^2 \theta + \cos^2 \theta &= 1\\ \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} &= \frac{1}{\cos^2 \theta}\\ \tan^2 \theta + 1 &= \sec^2 \theta \end{aligned}$$



 Positive angles are obtained by rotating counterclockwise.



- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.



- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ, then (x, -y) is on the terminal arm of -θ.



$$\begin{aligned} \sin \theta &= \frac{y}{r} \quad \csc \theta &= \frac{r}{y} \\ \cos \theta &= \frac{x}{r} \quad \sec \theta &= \frac{r}{x} \\ \tan \theta &= \frac{y}{x} \quad \cot \theta &= \frac{x}{y} \end{aligned}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ, then (x, -y) is on the terminal arm of -θ.



$$\begin{aligned} \sin\theta &= \frac{y}{r} \quad \csc\theta &= \frac{r}{y} \\ \cos\theta &= \frac{x}{r} \quad \sec\theta &= \frac{r}{x} \\ \tan\theta &= \frac{y}{x} \quad \cot\theta &= \frac{x}{y} \end{aligned}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ, then (x, -y) is on the terminal arm of -θ.

• 
$$\sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta.$$



$$\begin{aligned} \sin\theta &= \frac{y}{r} \quad \csc\theta &= \frac{r}{y} \\ \cos\theta &= \frac{x}{r} \quad \sec\theta &= \frac{r}{x} \\ \tan\theta &= \frac{y}{x} \quad \cot\theta &= \frac{x}{y} \end{aligned}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ, then (x, -y) is on the terminal arm of -θ.

• 
$$\sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta.$$

• 
$$\cos(-\theta) = \frac{x}{r} = \cos\theta.$$



$$\begin{aligned} \sin\theta &= \frac{y}{r} \quad \csc\theta &= \frac{r}{y} \\ \cos\theta &= \frac{x}{r} \quad \sec\theta &= \frac{r}{x} \\ \tan\theta &= \frac{y}{x} \quad \cot\theta &= \frac{x}{y} \end{aligned}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ, then (x, -y) is on the terminal arm of -θ.
- $\sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta.$
- $\cos(-\theta) = \frac{x}{r} = \cos \theta$ .
- sin is an odd function.



$$\begin{aligned} \sin \theta &= \frac{y}{r} \quad \csc \theta &= \frac{r}{y} \\ \cos \theta &= \frac{x}{r} \quad \sec \theta &= \frac{r}{x} \\ \tan \theta &= \frac{y}{x} \quad \cot \theta &= \frac{x}{y} \end{aligned}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ, then (x, -y) is on the terminal arm of -θ.
- $\sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta.$
- $\cos(-\theta) = \frac{x}{r} = \cos \theta$ .
- sin is an odd function.
- cos is an even function.





•  $2\pi$  represents a full rotation.



- $2\pi$  represents a full rotation.
- $\theta + 2\pi$  has the same terminal arm as  $\theta$ .



- $2\pi$  represents a full rotation.
- $\theta + 2\pi$  has the same terminal arm as  $\theta$ .
- $\theta + 2\pi$  uses the same point (x, y) and the same length *r*.



- $2\pi$  represents a full rotation.
- $\theta + 2\pi$  has the same terminal arm as  $\theta$ .
- $\theta + 2\pi$  uses the same point (x, y) and the same length *r*.

• 
$$\sin(\theta + 2\pi) = \sin \theta$$
.

• 
$$\cos(\theta + 2\pi) = \cos \theta$$
.



- $2\pi$  represents a full rotation.
- $\theta + 2\pi$  has the same terminal arm as  $\theta$ .
- $\theta + 2\pi$  uses the same point (x, y) and the same length *r*.
- $\sin(\theta + 2\pi) = \sin \theta$ .
- $\cos(\theta + 2\pi) = \cos \theta$ .
- We say sin and cos are 2π-periodic.

$$sin(x + y) = sin x cos y + cos x sin y$$
  

$$cos(x + y) = cos x cos y - sin x sin y$$

$$sin(x + y) = sin x cos y + cos x sin y$$
  

$$cos(x + y) = cos x cos y - sin x sin y$$

Substitute -y for y, and use the fact that sin(-y) = -sin y and cos(-y) = cos y:

$$sin(x - y) = sin x cos y - cos x sin y$$
  

$$cos(x - y) = cos x cos y + sin x sin y$$

$$sin(x + y) = sin x cos y + cos x sin y$$
  

$$cos(x + y) = cos x cos y - sin x sin y$$

$$sin(x + y) = sin x cos y + cos x sin y$$
  

$$cos(x + y) = cos x cos y - sin x sin y$$

To get the double angle formulas, substitute *x* for *y*:

$$\sin 2x = 2 \sin x \cos x$$
  
$$\cos 2x = \cos^2 x - \sin^2 x$$

$$sin(x + y) = sin x cos y + cos x sin y$$
  

$$cos(x + y) = cos x cos y - sin x sin y$$

To get the double angle formulas, substitute *x* for *y*:

$$\sin 2x = 2 \sin x \cos x$$
  
$$\cos 2x = \cos^2 x - \sin^2 x$$

Rewrite the second double angle formula in two ways, using  $\cos^2 x = 1 - \sin^2 x$  and  $\sin^2 x = 1 - \cos^2 x$ :

$$\cos 2x = 2\cos^2 x - 1$$
  
$$\cos 2x = 1 - 2\sin^2 x$$

$$sin(x + y) = sin x cos y + cos x sin y$$
  

$$cos(x + y) = cos x cos y - sin x sin y$$

To get the double angle formulas, substitute *x* for *y*:

$$\sin 2x = 2 \sin x \cos x$$
  
$$\cos 2x = \cos^2 x - \sin^2 x$$

Rewrite the second double angle formula in two ways, using  $\cos^2 x = 1 - \sin^2 x$  and  $\sin^2 x = 1 - \cos^2 x$ :

| cos 2 <i>x</i> | = | $2\cos^2 x - 1$  |
|----------------|---|------------------|
| cos 2x         | = | $1 - 2 \sin^2 x$ |

To get the half-angle formulas, solve these equations for  $\cos^2 x$  and  $\sin^2 x$  respectively.

$$\cos^2 x = \frac{1 + \cos 2x}{2}, \qquad \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$sin(x + y) = sin x cos y + cos x sin y$$
  

$$cos(x + y) = cos x cos y - sin x sin y$$

$$sin(x + y) = sin x cos y + cos x sin y$$
  

$$cos(x + y) = cos x cos y - sin x sin y$$

Divide the first equation by the second, and then cancel  $\cos x \cos y$  from the top and bottom:

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\begin{aligned} \sin(x+y) &= \sin x \cos y + \cos x \sin y \\ \cos(x+y) &= \cos x \cos y - \sin x \sin y \end{aligned}$$

Divide the first equation by the second, and then cancel  $\cos x \cos y$  from the top and bottom:

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

Do the same for the subtraction formulas:

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$
### Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ .

### Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ . $\sin x = \sin 2x$

## Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ . $\sin x = \sin 2x$ $\sin x = 2 \sin x \cos x$

## Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ . $\sin x = \sin 2x$ $\sin x = 2 \sin x \cos x$ $0 = 2 \sin x \cos x - \sin x$

# Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ . $\sin x = \sin 2x$ $\sin x = 2 \sin x \cos x$ $0 = 2 \sin x \cos x - \sin x$ $0 = \sin x (2 \cos x - 1)$

### Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ . $\sin x = \sin 2x$ $\sin x = 2 \sin x \cos x$ $0 = 2 \sin x \cos x - \sin x$ $0 = \sin x(2\cos x - 1)$ $\sin x = 0$ $2\cos x - 1 = 0$

# Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ . $\sin x = \sin 2x$ $\sin x = 2 \sin x \cos x$ $0 = 2 \sin x \cos x - \sin x$ $0 = \sin x(2 \cos x - 1)$ $\sin x = 0$ $x = 0, \pi, 2\pi$

# Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ . $\sin x = \sin 2x$ $\sin x = 2 \sin x \cos x$ $0 = 2 \sin x \cos x - \sin x$ $0 = \sin x(2 \cos x - 1)$ $\sin x = 0$ $x = 0, \pi, 2\pi$ $\cos x = \frac{1}{2}$

## Find all values of x in the interval $[0, 2\pi]$ such that $\sin x = \sin 2x$ . $\sin x = \sin 2x$ $\sin x = 2 \sin x \cos x$ $0 = 2 \sin x \cos x - \sin x$ $0 = \sin x (2\cos x - 1)$ $2\cos x - 1 = 0$ $\sin x = 0$ $\cos x = \frac{1}{2}$ $x = 0, \pi, 2\pi$ $x = \frac{\pi}{3}, \frac{5\pi}{3}$

Find all values of x in the interval  $[0, 2\pi]$  such that  $\sin x = \sin 2x$ .  $\sin x = \sin 2x$  $\sin x = 2 \sin x \cos x$  $0 = 2 \sin x \cos x - \sin x$  $0 = \sin x (2\cos x - 1)$  $\sin x = 0$  $2\cos x - 1 = 0$  $\cos x = \frac{1}{2}$  $x = 0, \pi, 2\pi$  $x = \frac{\pi}{3}, \frac{5\pi}{3}$ Therefore the equation has five solutions:  $0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}$ , and  $2\pi$ .





• sin x has zeroes at  $n\pi$  for all integers n.



- sin x has zeroes at  $n\pi$  for all integers n.
- $\cos x$  has zeroes at  $\pi/2 + n\pi$  for all integers *n*.



- sin x has zeroes at  $n\pi$  for all integers n.
- $\cos x$  has zeroes at  $\pi/2 + n\pi$  for all integers *n*.

• 
$$-1 \leq \sin x \leq 1$$
.



- sin x has zeroes at  $n\pi$  for all integers n.
- $\cos x$  has zeroes at  $\pi/2 + n\pi$  for all integers *n*.

• 
$$-1 \leq \sin x \leq 1$$
.

•  $-1 \leq \cos x \leq 1$ .







