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(1.4) The Tangent and Velocity Problems The Tangent Problem

The Tangent Problem

t

A tangent is a line that touches a curve.
Moreover, a tangent should have the
same “direction” as the curve at the point
of contact.
For a circle, a tangent is a line that
intersects the circle at exactly one point.
For more general curves, this definition
isn’t good enough.
The line l intersects the curve at exactly
one point, but it doesn’t look like a
tangent.
The line t does look like a tangent, but it
intersects the curve at two points.
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(1.4) The Tangent and Velocity Problems The Tangent Problem
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P = H1, 1L
y � x2
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Find the tangent to y = x2 at (1,1).

Tangent has equation
y − 1 = m(x − 1). Then m = y−1

x−1=
unknown slope.
If we know one point and the slope of
a line, we know the line.
We know only one point, P; we need
two points to find the slope.
Approximate solution: choose nearby
point Q = (x , x2) on parabola. Let
mPQ= slope of line through P and Q.
The closer x is to 1, the closer Q to
P, the closer mPQ is to 2.
This suggests the slope of the
tangent should be 2.
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(1.4) The Tangent and Velocity Problems The Tangent Problem

1
x

1

y

P = H1, 1L
y � x2

We say that the slope of the tangent is the
limit of the slope of the secants (limit will
be defined later in the lecture). We write:

lim
Q→P

mPQ = m, lim
x→1

x2 − 1
x − 1

= 2.

If the slope is indeed 2, then the equation
of the tangent is

y − 1 = 2(x − 1), or y = 2x − 1.
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(1.5) and (1.7) The Limit of a Function

The Limit of a Function

Definition (The Limit of a Function)
We write

lim
x→a

f (x) = L

and say “the limit of f (x), as x approaches a, equals L,” if we can make
the values of f (x) arbitrarily close to L by taking x to be sufficiently
close to a (on either side of a) but not equal to a.

Equivalent formulation. For every ε > 0, there exists δ > 0 such that
|f (x)− L| < ε for all x with 0 < |x − a| < δ

x

y

y = f (x)

a

L
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(1.5) and (1.7) The Limit of a Function

Example

0.5

1

Guess the value of
limx→1

x−1
x2−1 .

Notice that x−1
x2−1 doesn’t exist

at 1.
It does exist at values near 1.
We guess that the limit is 0.5.
In this case, our guess is
correct.

x f (x) x f (x)
0.5 0.666667 1.5 0.400000
0.9 0.526316 1.1 0.476190
0.99 0.502513 1.01 0.497512
0.999 0.500250 1.001 0.499750
0.9999 0.500025 1.0001 0.499975
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(1.5) and (1.7) The Limit of a Function

Example

y

x

1

Guess the value of lim
x→0

sin x
x .

Notice that sin x
x is not defined

at 0.
It is defined at values near 0.
We guess that the limit is 1.
In this case, our guess is
correct.

x f (x) x f (x)
±1.0 0.841471 ±0.1 0.998334
±0.5 0.958851 ±0.05 0.999583
±0.4 0.973546 ±0.01 0.999983
±0.3 0.985067 ±0.005 0.999995
±0.2 0.993347 ±0.001 0.999999
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(1.5) and (1.7) The Limit of a Function

Example

Guess the value of
lim
x→0

sin π
x .

Notice that sin π
x is not

defined at 0.
It is defined at values
near 0.
We could guess that
the limit is 0.
In this case, the guess
is wrong.

x f (x) x f (x)
1 sinπ = 0 1

2 sin 2π = 0
1
3 sin 3π = 0 1

4 sin 4π = 0
0.1 sin 10π = 0 0.01 sin 100π = 0

y

x

1
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(1.5) and (1.7) The Limit of a Function One-sided Limits

One-sided Limits

Example
The Heaviside function H is
defined by

H(t) =
{

0 if t < 0
1 if t ≥ 0

.

y

x

1

As t approaches 0 from the
left, H(t) approaches 0.
As t approaches 0 from the
right, H(t) approaches 1.
There is no single number that
H(t) approaches as t
approaches 0.
Therefore lim

t→0
H(t) doesn’t

exist.
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(1.5) and (1.7) The Limit of a Function One-sided Limits

Definition (Left-hand Limit)
We write

lim
x→a−

f (x) = L or lim
x→a
x<a

f (x) = L

and say the left-hand limit of f (x) as x approaches a is equal to L
if we can make the values of f (x) arbitrarily close to L by taking x to be
sufficiently close to and less than a.

ax
x

y

y � f HxL

f HxL L

a x
x

y

y � f HxL
f HxLL

We can define a right-hand limit similarly.
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(1.5) and (1.7) The Limit of a Function One-sided Limits

Definition (Right-hand Limit)
We write

lim
x→a+

f (x) = L or lim
x→a
x>a

f (x) = L

and say the right-hand limit of f (x) as x approaches a is equal to L
if we can make the values of f (x) arbitrarily close to L by taking x to be
sufficiently close to and greater than a.

ax
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y

y � f HxL

f HxL L

a x
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y � f HxL
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(1.5) and (1.7) The Limit of a Function One-sided Limits

By comparing the definitions, we can see that

lim
x→a

f (x) = L if and only if lim
x→a−

f (x) = L and lim
x→a+

f (x) = L.

Example

The graph of a function g is shown to
the right. Use it to state the values (if
they exist) of the following:

lim
x→1−

g(x) =

3

lim
x→3−

g(x) =

1

lim
x→1+

g(x) =

3

lim
x→3+

g(x) =

2

lim
x→1

g(x) =

3

lim
x→3

g(x) =

DNE

1 2 3 4
x

1

2

3

4

y

y � gHxL
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(1.5) and (1.7) The Limit of a Function One-sided Limits

By comparing the definitions, we can see that
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Calculating Limits Using Limit Laws

Theorem (Limit Laws)
Suppose that c is a constant and that the limits lim

x→a
f (x) and lim

x→a
g(x)

exist (±∞ not allowed). Then
1 lim

x→a
[f (x) + g(x)] = lim

x→a
f (x) + lim

x→a
g(x).

2 lim
x→a

[f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x).

3 lim
x→a

[cf (x)] = c lim
x→a

f (x).

4 lim
x→a

[f (x)g(x)] = lim
x→a

f (x) · lim
x→a

g(x).

5 lim
x→a

f (x)
g(x)

=
lim
x→a

f (x)

lim
x→a

g(x)
if lim

x→a
g(x) 6= 0.

Sum Law p
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Calculating Limits Using Limit Laws

Theorem (Limit Laws)
Suppose that c is a constant and that the limits lim
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f (x) and lim
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Calculating Limits Using Limit Laws

Theorem (Limit Laws)
Suppose that c is a constant and that the limits lim

x→a
f (x) and lim

x→a
g(x)

exist (±∞ not allowed). Then
1 lim

x→a
[f (x) + g(x)] = lim

x→a
f (x) + lim

x→a
g(x).

2 lim
x→a

[f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x).

3 lim
x→a

[cf (x)] = c lim
x→a

f (x).

4 lim
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f (x) · lim
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Calculating Limits Using Limit Laws

Theorem (Limit Laws)
Suppose that c is a constant and that the limits lim

x→a
f (x) and lim

x→a
g(x)

exist (±∞ not allowed). Then
1 lim

x→a
[f (x) + g(x)] = lim

x→a
f (x) + lim

x→a
g(x).

2 lim
x→a

[f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x).

3 lim
x→a

[cf (x)] = c lim
x→a

f (x).

4 lim
x→a

[f (x)g(x)] = lim
x→a

f (x) · lim
x→a

g(x).

5 lim
x→a

f (x)
g(x)

=
lim
x→a

f (x)

lim
x→a

g(x)
if lim

x→a
g(x) 6= 0.
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p
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Calculating Limits Using Limit Laws

Theorem (Limit Laws)
Suppose that c is a constant and that the limits lim

x→a
f (x) and lim

x→a
g(x)

exist (±∞ not allowed). Then
1 lim

x→a
[f (x) + g(x)] = lim

x→a
f (x) + lim

x→a
g(x).

2 lim
x→a

[f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x).

3 lim
x→a

[cf (x)] = c lim
x→a

f (x).

4 lim
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[f (x)g(x)] = lim
x→a
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5 lim
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lim
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Calculating Limits Using Limit Laws

Theorem (Limit Laws)
Suppose that c is a constant and that the limits lim

x→a
f (x) and lim

x→a
g(x)

exist (±∞ not allowed). Then
1 lim

x→a
[f (x) + g(x)] = lim

x→a
f (x) + lim

x→a
g(x).

2 lim
x→a

[f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x).

3 lim
x→a

[cf (x)] = c lim
x→a

f (x).

4 lim
x→a

[f (x)g(x)] = lim
x→a

f (x) · lim
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5 lim
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f (x)
g(x)
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lim
x→a

f (x)

lim
x→a

g(x)
if lim

x→a
g(x) 6= 0.
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p
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Here are some other useful limit laws:

6 lim
x→a

[f (x)]n = [ lim
x→a

f (x)]n

7 lim
x→a

c = c.

8 lim
x→a

x = a.

9 lim
x→a

xn = an.

10 lim
x→a

n
√

x = n
√

a, if a > 0.

11 lim
x→a

n
√

f (x) = n
√

lim
x→a

f (x), if limx→a f (x) > 0.

Power Law p
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Here are some other useful limit laws:

6 lim
x→a

[f (x)]n = [ lim
x→a

f (x)]n

7 lim
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c = c.

8 lim
x→a

x = a.

9 lim
x→a

xn = an.

10 lim
x→a

n
√

x = n
√

a, if a > 0.

11 lim
x→a

n
√

f (x) = n
√

lim
x→a

f (x), if limx→a f (x) > 0.

Power Law

p

FreeCalc Math 140 Lecture 4 February 7, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Here are some other useful limit laws:

6 lim
x→a

[f (x)]n = [ lim
x→a

f (x)]n

7 lim
x→a

c = c.

8 lim
x→a

x = a.

9 lim
x→a

xn = an.

10 lim
x→a

n
√

x = n
√

a, if a > 0.

11 lim
x→a

n
√

f (x) = n
√

lim
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f (x), if limx→a f (x) > 0.

Root Law

p
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Here are some other useful limit laws:

6 lim
x→a

[f (x)]n = [ lim
x→a

f (x)]n

7 lim
x→a

c = c.

8 lim
x→a

x = a.

9 lim
x→a

xn = an.

10 lim
x→a

n
√

x = n
√

a, if a > 0.

11 lim
x→a

n
√

f (x) = n
√

lim
x→a

f (x), if limx→a f (x) > 0.

Direct Substitution

p
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Example
Evaluate the limit and justify each step:

=

lim
x→5

(2x2 − 3x + 4)

= lim
x→5

(2x2 − 3x) + lim
x→5

4 = Law

1

= lim
x→5

(2x2)− lim
x→5

(3x) + lim
x→5

4 = Law

2

= 2 lim
x→5

x2 − 3 lim
x→5

x + lim
x→5

4 = Law

3

= 2 · 52 − 3 · 5 + 4 = Laws

7, 8, and 9

= 39.
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