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(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit Laws)
Evaluate the limit and justify each step:

=

lim
x→3

x + 2√
x − 1(x + 1)2

=
limx→3(x + 2)

limx→3
(√

x − 1(x + 1)2
) Law

5

=
limx→3(x + 2)

limx→3
√

x − 1 · limx→3
(
(x + 1)2

) Law

4

=
limx→3(x + 2)√

limx→3(x − 1) ( limx→3(x + 1))2 Laws

11 and 6

=
limx→3 x + limx→3 2

√
limx→3 x − limx→3 1 ( limx→3 x + limx→3 1)2 Laws

1 and 2

=
3 + 2

√
3− 1 (3 + 1)2 =

5
16
√

2
. Laws

8 and 7
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Theorem (Direct Substitution)
Let f be an algebraic function. Let the point a be in its domain (i.e.,
f (a) is defined). Then lim

x→a
f (x) = f (a).

This theorem is a partial case of the following theorem.

Theorem (Direct Substitution)
Let f be a continuous function. Let the point a be in its domain (i.e.,
f (a) is defined). Then lim

x→a
f (x) = f (a).

Continuous functions will be defined later in this lecture.
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Direct Substitution)

Find lim
x→3

x + 2√
x − 1(x + 1)2

Plug in 3:
(3) + 2√

(3)− 1((3) + 1)2
=

5
16
√

2

Therefore lim
x→3

x + 2√
x − 1(x + 1)2

=
5

16
√

2
.
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit in Which Direct Substitution Doesn’t Work)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.
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(1.6) and (1.7) Calculating Limits Using Limit Laws

When computing a limit as x approaches a, we don’t care what
happens when x = a. This gives the following useful fact:

If f (x) = g(x)

when x 6= a,
then lim

x→a
f (x) = lim

x→a
g(x),

provided the limit exists.
We can use this fact to find limx→a f (x) when f (a) has the form 0

0 . In
such a case, we use algebra to find a function g(x) that agrees with
f (x) at all points except x = a. Here are some common techniques.

1 Factoring.
2 Using a conjugate radical.
3 Finding a common denominator.

4 Using Taylor/Maclaurin series expansion. Studied in Calc II.
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3 Finding a common denominator.
4 Using Taylor/Maclaurin series expansion. Studied in Calc II.
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.
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x→3

x3 − 3x2 + x − 3
x2 − 7x + 12
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x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)
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x→3

x2 + 1
x − 4
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x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0

0
Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0

0
Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)

(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)

(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=

(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=
(3)2 + 1
(3)− 4

=

10
−1

=

− 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=
(3)2 + 1
(3)− 4

=
10
−1

= − 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example (Limit with Factoring)

Find lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

Plug in 3:
(3)3 − 3(3)2 + (3)− 3

(3)2 − 7(3) + 12
=

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Factor: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

= lim
x→3

(x2 + 1)(x − 3)
(x − 4)(x − 3)

= lim
x→3

x2 + 1
x − 4

Plug in 3: lim
x→3

x3 − 3x2 + x − 3
x2 − 7x + 12

=
(3)2 + 1
(3)− 4

=
10
−1

= − 10.

FreeCalc Math 140 Lecture 5 February 12, 2013



(1.6) and (1.7) Calculating Limits Using Limit Laws

Example

Find lim
t→0

√
t2 + 9− 3

t2

Plug in 0:

√
(0)2 + 9− 3

(0)2 =

0
0

Zero over zero is undefined, so we can’t use direct substitution.

Use a conjugate radical:

lim
t→0

√
t2 + 9− 3

t2 = lim
t→0

√
t2 + 9− 3

t2 ·

√
t2 + 9 + 3√
t2 + 9 + 3

= lim
t→0

(t2 + 9)− 9

t2(
√

t2 + 9 + 3)

= lim
t→0

t2

t2(
√

t2 + 9 + 3)

= lim
t→0

1√
t2 + 9 + 3

Plug in 0: =
1√

(0)2 + 9 + 3
=

1
6
.
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Recall from section 2.2:

lim
x→a

f (x) = L if and only if lim
x→a−

f (x) = L = lim
x→a+

f (x).

We can use this to find the limit of a piecewise defined function, or
show that it doesn’t exist.
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Example
If

f (x) =
{ √

x − 4 if x > 4
8− 2x if x < 4

determine whether limx→4 f (x) exists.

lim
x→4+

f (x) = lim
x→4+

√
x − 4 =

√
4− 4 = 0

lim
x→4−

f (x) = lim
x→4−

(8− 2x) = 8− 2 · 4 = 0

The left and right hand limits are equal. Therefore the limit exists and

lim
x→4

f (x) = 0.
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Theorem
If f (x) ≤ g(x) when x is near a (except possibly at a) and the limits of f
and g both exist as x approaches a, then

lim
x→a

f (x) ≤ lim
x→a

g(x).

Theorem (The Squeeze Theorem)
Suppose f (x) ≤ g(x) ≤ h(x) when x is near a (except possibly at a)
and

lim
x→a

f (x) = lim
x→a

h(x) = L

Then
lim
x→a

g(x) = L.
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(1.6) and (1.7) Calculating Limits Using Limit Laws

Example

Show that lim
x→0

x2 sin 8
x = 0.

WRONG: lim
x→0

x2 sin
8
x
= lim

x→0
x2 · lim

x→0
sin

8
x

Doesn’t work because lim
x→0

sin 8
x doesn’t exist.

y = x2 sin 8
x

y = ±x2

−1 ≤ sin 8
x ≤ 1.

− x2 ≤ x2 sin 8
x ≤ x2.

lim
x→0

x2 = 0 and lim
x→0

(−x2) = 0.

Therefore by the Squeeze Theorem

lim
x→0

x2 sin
8
x
= 0.
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(1.8) Continuity

Continuity

Definition (Continuous at a Number)
A function f is continuous at a number a if

lim
x→a

f (x) = f (a).

The definition (implicitly) requires
the following.

1 f (a) is defined (i.e., a is in the
domain of f ).

2 lim
x→a

f (x) exists.
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(1.8) Continuity

Definition (Discontinuous at a Number)
Suppose f is defined near a. We say f is discontinuous at a if it is not
continuous at a.

“f is defined near a” means that f is defined on an open interval
containing a, except perhaps at a itself.
Physical phenomena are often continuous. The majority of the physical
phenomena that are understood are continuous. Examples:

Motion of a vehicle with respect to time without sudden brakes.
Orbits of planets and celestial bodies with respect to time.
A person’s height with respect to time.
And many more.

Discontinuous phenomena examples:

Particle velocities during collisions and explosions.
Electric current phenomena, gating events in porins (the event of
a molecule passing in and out of a cell).
Particle physics phenomena.
And many more.
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(1.8) Continuity

Example
The picture below shows a graph of a function f . At which numbers is f
either discontinuous or not defined? Why?

1 2 3 4

Discontinuous at 1:
lim
x→1

f (x)

exists.

f (1)

is not defined.

Discontinuous at 2:
f (2)

is defined.

lim
x→2

f (x)

doesn’t exist.

Discontinuous at 4:
f (4)

is defined.

lim
x→4

f (x)

exists.

lim
x→4

f (x) 6= f (4).
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(1.8) Continuity

Definition (Greatest Integer Function)
The greatest integer function bxc is defined as the largest integer that
is less than or equal to x .

1 2 3−1

1

b4c =

4

b4.8c =

4

bπc =

3

b
√

2c =

1

⌊
−1

2

⌋
=

− 1

b−πc =

− 4
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(1.8) Continuity

Example
Where is this function discontinuous?

f (x) =
x2 − x − 2

x − 2

f (2)

is not defined.

Discontinuous at 2.
This is called a removable
discontinuity because we could
remove it by redefining f at the single
number 2.
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(1.8) Continuity

Example
Where is this function discontinuous?

f (x) =
{ 1

x2 if x 6= 0
1 if x = 0

y = 1
x2

f (0)

is defined (f (0) = 1).

lim
x→0

f (x)

doesn’t exist (∞).

Discontinuous at 0.
This is called an infinite discontinuity.
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(1.8) Continuity

Example
Where is this function discontinuous?

f (x) =

{
x2−x−2

x−2 if x 6= 2
1 if x = 2

f (2)

is defined (f (2) = 1).

lim
x→2

f (x)

exists (= 3).

lim
x→2

f (x) 6= f (2).

Discontinuous at 2.
This is also called a removable
discontinuity.
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(1.8) Continuity

Example
Where is this function discontinuous?

f (x) = bxc

1 2 3−1

1

f (1)

exists (f (1) = 1).

lim
x→1+

f (x)

= 1.

lim
x→1−

f (x)

= 0.

lim
x→1

f (x)

doesn’t exist.

Discontinuous at 1.
Discontinuous at every integer n.
These are called jump discontinuities
because the function “jumps” at these
numbers (i.e., the left limit doesn’t
equal the right limit).
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x→1

f (x)

doesn’t exist.
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