Math 140 Lecture 6

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

February 14, 2013

Definition (Continuous from the Right or Left)

A function f is continuous from the right at a number a if

$$\lim_{x\to a^+} f(x) = f(a)$$

and f is continuous from the left at a if

$$\lim_{x\to a^-} f(x) = f(a).$$

Consider $f(x) = \lfloor x \rfloor$, and pick any integer *n*.

Definition (Continuous on an Interval)

A function *f* is continuous on an interval if it is continuous at every number in the interval.

If *f* is defined only on one side of an endpoint of the interval, continuous at the endpoint means continuous from the right or continuous from the left.

Definition (Continuous on an Interval)

A function *f* is continuous on an interval if it is continuous at every number in the interval.

If *f* is defined only on one side of an endpoint of the interval, continuous at the endpoint means continuous from the right or continuous from the left. This is a consequence from the definition of continuity. As an exercise, you may try to reason why.

Definition (Continuous on an Interval)

A function *f* is continuous on an interval if it is continuous at every number in the interval.

If *f* is defined only on one side of an endpoint of the interval, continuous at the endpoint means continuous from the right or continuous from the left. This is a consequence from the definition of continuity. As an exercise, you may try to reason why. Think of a function that is continuous on an interval as a function that has no breaks in its graph, and so can be drawn "without lifting your pen".

$$\lim_{x\to a}(f+g)(x) = \lim_{x\to a}[f(x)+g(x)]$$

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

This shows f + g is continuous at a.

FreeCalc Math 140

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

This shows f + g is continuous at *a*. The other parts are similar.

Theorem (Classes of Continuous Functions)

The following types of functions are continuous at every number in their domains: polynomials rational functions root functions trigonometric functions

Theorem (Compositions of Continuous Functions)

If g is continuous at a and f is continuous at g(a), then the composition function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

Find $\lim_{x\to -2} \frac{x^3+2x^2-1}{5-3x}$. The function $f(x) = \frac{x^3+2x^2-1}{5-3x}$ is rational, so is continuous on its domain.

Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

Find $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Find $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \lim_{x \to -2} f(x)$$

Find $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
$$= \lim_{x \to -2} f(x)$$
$$= f(-2)$$

Find $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
$$= \lim_{x \to -2} f(x)$$
$$= f(-2)$$
$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$

Find $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$.

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

= $\lim_{x \to -2} f(x)$
= $f(-2)$
= $\frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$
= $\frac{-1}{11}$

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- k(x) =
- h(x) =
- *g*(*x*) =
- f(x) =

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- k(x) =
- h(x) =
- *g*(*x*) =
- f(x) =

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- h(x) =
- *g*(*x*) =
- f(x) =

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- h(x) =
- *g*(*x*) =
- f(x) =

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- *g*(*x*) =
- f(x) =

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- g(x) =
- f(x) =

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- g(x) = x 4.
- f(x) =

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- g(x) = x 4.
- f(x) =

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- g(x) = x 4.
- $f(x) = \frac{1}{x}$.

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- g(x) = x 4.
- $f(x) = \frac{1}{x}$.
- These functions are continuous on their domains, so *F* is continuous on its domain.

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- g(x) = x 4.
- $f(x) = \frac{1}{x}$.
- These functions are continuous on their domains, so *F* is continuous on its domain.
- Its domain is

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- g(x) = x 4.
- $f(x) = \frac{1}{x}$.
- These functions are continuous on their domains, so *F* is continuous on its domain.
- Its domain is everything but 3 and -3.

- We can write *F* as the composition of 4 functions:
- $F = f \circ g \circ h \circ k$, or F(x) = f(g(h(k(x)))).
- $k(x) = x^2 + 7$.
- $h(x) = \sqrt{x}$.
- g(x) = x 4.
- $f(x) = \frac{1}{x}$.
- These functions are continuous on their domains, so *F* is continuous on its domain.
- Its domain is everything but 3 and -3.
- Therefore F is continuous on $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

between 1 and 2.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

between 1 and 2.

• Let
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$
.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

between 1 and 2.

• Let
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$
.

• Use the intermediate value theorem with a = 1, b = 2, and N = 0.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

between 1 and 2.

• Let
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$
.

• Use the intermediate value theorem with a = 1, b = 2, and N = 0.

•
$$f(1) = 4 \cdot 1^3 - 6 \cdot 1^2 + 3 \cdot 1 - 2 = -1 < 0.$$

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

between 1 and 2.

• Let
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$
.

• Use the intermediate value theorem with a = 1, b = 2, and N = 0.

•
$$f(1) = 4 \cdot 1^3 - 6 \cdot 1^2 + 3 \cdot 1 - 2 = -1 < 0.$$

•
$$f(2) = 4 \cdot 2^3 - 6 \cdot 2^2 + 3 \cdot 2 - 2 = 12 > 0.$$

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

between 1 and 2.

• Let
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$
.

• Use the intermediate value theorem with a = 1, b = 2, and N = 0.

•
$$f(1) = 4 \cdot 1^3 - 6 \cdot 1^2 + 3 \cdot 1 - 2 = -1 < 0.$$

•
$$f(2) = 4 \cdot 2^3 - 6 \cdot 2^2 + 3 \cdot 2 - 2 = 12 > 0.$$

• N = 0 is a number between f(1) = -1 and f(2) = 12.

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$

between 1 and 2.

• Let
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$
.

- Use the intermediate value theorem with a = 1, b = 2, and N = 0.
- $f(1) = 4 \cdot 1^3 6 \cdot 1^2 + 3 \cdot 1 2 = -1 < 0.$
- $f(2) = 4 \cdot 2^3 6 \cdot 2^2 + 3 \cdot 2 2 = 12 > 0.$
- N = 0 is a number between f(1) = -1 and f(2) = 12.
- Therefore there is a *c* between 1 and 2 such that f(c) = 0.