

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

February 19, 201

(1.2) and (6) Exponential Functions The Natural Exponential Function

Outline

(1.2) and (6) Exponential Functions The Natural Exponential Function

(6.1) Inverse Functions

- One-to-one Functions
- The Definition of the Inverse of f

Outline

(1.2) and (6) Exponential Functions The Natural Exponential Function

(6.1) Inverse Functions

- One-to-one Functions
- The Definition of the Inverse of f
- (1.2) and (6) Logarithmic Functions
 Natural Logarithms

(1.2) Exponential Functions

(1.2) Exponential Functions

The function $f(x) = 2^x$ is called an exponential function because the variable *x* is the exponent.

Definition (Exponential Function)

An exponential function is a function of the form $f(x) = a^x$, where *a* is a positive constant.

• In preceding lectures for fixed x, we learned of $g(a) = a^x$ as a function of a.

- In preceding lectures for fixed x, we learned of $g(a) = a^x$ as a function of a.
- We promised a construction of *a*^{*x*} in the coming lectures.

- In preceding lectures for fixed x, we learned of g(a) = a^x as a function of a.
- We promised a construction of a^x in the coming lectures.
- In present lecture we study $f(x) = a^x$ as a function of x.

- In preceding lectures for fixed x, we learned of g(a) = a^x as a function of a.
- We promised a construction of a^x in the coming lectures.
- In present lecture we study $f(x) = a^x$ as a function of x.
- There are several equivalent ways of defining a^x .

- In preceding lectures for fixed x, we learned of g(a) = a^x as a function of a.
- We promised a construction of a^x in the coming lectures.
- In present lecture we study $f(x) = a^x$ as a function of x.
- There are several equivalent ways of defining a^x .
- We give the easiest definition.

- In preceding lectures for fixed x, we learned of g(a) = a^x as a function of a.
- We promised a construction of a^x in the coming lectures.
- In present lecture we study $f(x) = a^x$ as a function of x.
- There are several equivalent ways of defining a^x .
- We give the easiest definition.
- We give a second equivalent definition. The second definition is studied in detail in Calculus II.

- In preceding lectures for fixed x, we learned of g(a) = a^x as a function of a.
- We promised a construction of a^x in the coming lectures.
- In present lecture we study $f(x) = a^x$ as a function of *x*.
- There are several equivalent ways of defining a^x .
- We give the easiest definition.
- We give a second equivalent definition. The second definition is studied in detail in Calculus II.
- We discuss pros and cons.

• For *p*-integer we know to compute *a^p*.

- For *p*-integer we know to compute *a^p*.
- Therefore for *q*-integer we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \{x | \text{largest } x \text{ with } x^q \le a\}.$

- For *p*-integer we know to compute *a^p*.
- Therefore for *q*-integer we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \{x | \text{largest } x \text{ with } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.

- For *p*-integer we know to compute *a^p*.
- Therefore for *q*-integer we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \{x | \text{largest } x \text{ with } x^q \le a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^x = \lim_{\substack{y \to x \ y ext{-rational}}} a^y$$

- For *p*-integer we know to compute *a^p*.
- Therefore for *q*-integer we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \{x | \text{largest } x \text{ with } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^x = \lim_{\substack{y \to x \ y ext{-rational}}} a^y$$

• Not computationally effective. It is not how computers compute.

- For *p*-integer we know to compute *a^p*.
- Therefore for *q*-integer we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \{x | \text{largest } x \text{ with } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^x = \lim_{\substack{y o x \ y o ext{rational}}} a^y$$

- Not computationally effective. It is not how computers compute.
- Difficult to get derivative, anti-derivative of *a*^x. Will need to take a few facts for granted without proof.

- For *p*-integer we know to compute *a^p*.
- Therefore for *q*-integer we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \{x | \text{largest } x \text{ with } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^x = \lim_{\substack{y \to x \ y ext{-rational}}} a^y$$

- Not computationally effective. It is not how computers compute.
- Difficult to get derivative, anti-derivative of *a*^x. Will need to take a few facts for granted without proof.
- However is the easiest approach. a^{x+y} = a^xa^y is easiest to prove (follows directly from the ε, δ-definition of lim we studied).

- For *p*-integer we know to compute *a^p*.
- Therefore for *q*-integer we know to compute $a^{\frac{1}{q}} = \sqrt[q]{a} = \{x | \text{largest } x \text{ with } x^q \leq a\}.$
- Therefore we know to compute $a^{\frac{p}{q}}$ for all rational $\frac{p}{q}$.
- We can then define

$$a^x = \lim_{\substack{y o x \ y o ext{rational}}} a^y$$

- Not computationally effective. It is not how computers compute.
- Difficult to get derivative, anti-derivative of *a*^x. Will need to take a few facts for granted without proof.
- However is the easiest approach. a^{x+y} = a^xa^y is easiest to prove (follows directly from the ε, δ-definition of lim we studied).
- This is the definition we assume in Calculus I.

• The following definition is equivalent, studied in Calculus II.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

• The following definition is equivalent, studied in Calculus II.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 * 2 * 3 * \cdots * (n-1) * n$ and is read "*n* factorial".

• The following definition is equivalent, studied in Calculus II.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 * 2 * 3 * \cdots * (n - 1) * n$ and is read "*n* factorial". • For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

• The following definition is equivalent, studied in Calculus II.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 * 2 * 3 * \cdots * (n - 1) * n$ and is read "*n* factorial". • For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied in Calc II.
• The following definition is equivalent, studied in Calculus II.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 * 2 * 3 * \cdots * (n - 1) * n$ and is read "*n* factorial". • For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied in Calc II.

• For arbitrary a > 0 define a^x as $a^x = e^{x \ln a}$.

• The following definition is equivalent, studied in Calculus II.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 * 2 * 3 * \cdots * (n-1) * n$ and is read "*n* factorial". • For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied in Calc II.

- For arbitrary a > 0 define a^x as $a^x = e^{x \ln a}$.
- Disadvantage: more difficult to prove $e^{x+y} = e^x e^y$ and $e^{\ln(1+x)} = 1 + x$, but not too difficult.

• The following definition is equivalent, studied in Calculus II.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 * 2 * 3 * \cdots * (n-1) * n$ and is read "*n* factorial". • For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied in Calc II.

- For arbitrary a > 0 define a^x as $a^x = e^{x \ln a}$.
- Disadvantage: more difficult to prove $e^{x+y} = e^x e^y$ and $e^{\ln(1+x)} = 1 + x$, but not too difficult.
- Everything else (including differentiation, integration) is much easier.

• The following definition is equivalent, studied in Calculus II.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

Here $n! = 1 * 2 * 3 * \cdots * (n - 1) * n$ and is read "*n* factorial". • For |x| < 1 define

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n+1} x^n}{n} + \dots$$

Infinite sum studied in Calc II.

- For arbitrary a > 0 define a^x as $a^x = e^{x \ln a}$.
- Disadvantage: more difficult to prove $e^{x+y} = e^x e^y$ and $e^{\ln(1+x)} = 1 + x$, but not too difficult.
- Everything else (including differentiation, integration) is much easier.
- This is how computers compute e^x .

FreeCalc Math 140

Lecture 7

Graphical comparison of $y = 2^x$ with $y = x^2$. Axes have different scales.

Graphical comparison of $y = 2^x$ with $y = x^2$. Axes have different scales.

Draw the graph of the function $y = 2^{-x} - 1 = 0.5^{x} - 1 = (\frac{1}{2})^{x} - 1$. $v = 2^{x}$ Recall from previous lectures. Plot of 2^x assumed given.

Draw the graph of the function $y = 2^{-x} - 1 = 0.5^{x} - 1 = (\frac{1}{2})^{x} - 1$.

Recall from previous lectures.

- Plot of 2^x assumed given.
- Plot f(-x) = reflect f(x) across y axis.

Draw the graph of the function $y = 2^{-x} - 1 = 0.5^{x} - 1 = (\frac{1}{2})^{x} - 1$.

Recall from previous lectures.

- Plot of 2^x assumed given.
- Plot f(-x) = reflect f(x) across y axis.
- Plot g(x) 1 = shift graph g(x)
 1 unit down.

• One base for an exponential function is especially useful.

- One base for an exponential function is especially useful.
- It has a special property: its tangent line at x = 0 has slope m = 1.

- One base for an exponential function is especially useful.
- It has a special property: its tangent line at x = 0 has slope m = 1.
- We call this number e.

- One base for an exponential function is especially useful.
- It has a special property: its tangent line at x = 0 has slope m = 1.
- We call this number e.
- *e* is a number between 2 and 3. In fact, $e \approx 2.71828$.

One-to-one Functions

Definition (One-to-one Function)

A function *f* is a one-to-one function if it never takes on the same value twice; that is,

$$f(x_1) \neq f(x_2)$$
 whenever $x_1 \neq x_2$.

Question: How can we tell from the graph of a function whether it is one-to-one or not?

Answer: Use the horizontal line test.

The Horizontal Line Test.

A function is one-to-one if and only if no horizontal line intersects it more than once.

Question: How can we tell from the graph of a function whether it is one-to-one or not?

Answer: Use the horizontal line test.

The Horizontal Line Test.

A function is one-to-one if and only if no horizontal line intersects it more than once.

FreeCalc Math 140

Question: How can we tell from the graph of a function whether it is one-to-one or not?

Answer: Use the horizontal line test.

The Horizontal Line Test.

A function is one-to-one if and only if no horizontal line intersects it more than once.

Definition (f^{-1})

Let *f* be a one-to-one function with domain *A* and range *B*. Then the inverse of *f* is the function f^{-1} that has domain *B* and range *A* and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Definition (f^{-1})

Let *f* be a one-to-one function with domain *A* and range *B*. Then the inverse of *f* is the function f^{-1} that has domain *B* and range *A* and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

Definition (f^{-1})

Let *f* be a one-to-one function with domain *A* and range *B*. Then the inverse of *f* is the function f^{-1} that has domain *B* and range *A* and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

• Only one-to-one functions have inverses.

Definition (f^{-1})

Let *f* be a one-to-one function with domain *A* and range *B*. Then the inverse of *f* is the function f^{-1} that has domain *B* and range *A* and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

- Only one-to-one functions have inverses.
- f^{-1} reverses the effect of f.

Definition (f^{-1})

Let *f* be a one-to-one function with domain *A* and range *B*. Then the inverse of *f* is the function f^{-1} that has domain *B* and range *A* and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

- Only one-to-one functions have inverses.
- f^{-1} reverses the effect of f.
- domain of f^{-1} = range of f.
- range of $f^{-1} =$ domain of f.

Definition (f^{-1})

Let *f* be a one-to-one function with domain *A* and range *B*. Then the inverse of *f* is the function f^{-1} that has domain *B* and range *A* and is defined by

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y$$

for all y in B.

Note:

- Only one-to-one functions have inverses.
- f^{-1} reverses the effect of f.
- domain of f^{-1} = range of f.
- range of $f^{-1} =$ domain of f.

Example $(f(x) = x^3)$

The inverse of $f(x) = x^3$ is $f^{-1}(x) = \sqrt[3]{x}$. This is because if $y = x^3$, then

$$f^{-1}(y) = \sqrt[3]{y} = \sqrt[3]{x^3} = x.$$

WARNING: Do not mistake the -1 in $f^{-1}(x)$ for an exponent.

$$f^{-1}(x)$$
 does not mean $\frac{1}{f(x)}$.

If you want to write $\frac{1}{f(x)}$ using exponents, you can write $(f(x))^{-1}$.

WARNING: Do not mistake the -1 in $f^{-1}(x)$ for an exponent.

$$f^{-1}(x)$$
 does not mean $\frac{1}{f(x)}$

If you want to write ¹/_{f(x)} using exponents, you can write (f(x))⁻¹. *f*⁻¹(x) is the compositional inverse of *f*.

WARNING: Do not mistake the -1 in $f^{-1}(x)$ for an exponent.

$$f^{-1}(x)$$
 does not mean $\frac{1}{f(x)}$

If you want to write $\frac{1}{f(x)}$ using exponents, you can write $(f(x))^{-1}$.

- $f^{-1}(x)$ is the compositional inverse of f.
- $\frac{1}{f(x)}$ is the multiplicative inverse of *f*.

Let *f* be a one-to-one function.

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Let *f* be a one-to-one function.

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) =$$

Let *f* be a one-to-one function.

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y)$$
$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) =$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x)$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y.$$

$$f^{-1}(y) = x \qquad \Leftrightarrow \qquad f(x) = y.$$

Therefore

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y.$$

$$x \rightarrow f^{(-1)} \rightarrow f^{(-1)}(x) \rightarrow f \rightarrow x$$

• Write
$$y = f(x)$$
.

Solve this equation for x in terms of y (if possible).

• Write
$$y = f(x)$$
.

Solve this equation for x in terms of y (if possible).

Example

• Write y = f(x).

Solve this equation for *x* in terms of *y* (if possible).

Example

$$y = x^3 + 2$$

• Write
$$y = f(x)$$
.

Solve this equation for *x* in terms of *y* (if possible).

Example

$$y = x^3 + 2$$
$$x^3 = y - 2$$

• Write
$$y = f(x)$$
.

Solve this equation for *x* in terms of *y* (if possible).

Example

$$y = x^3 + 2$$
$$x^3 = y - 2$$
$$x = \sqrt[3]{y - 2}$$

• Write
$$y = f(x)$$
.

Solve this equation for *x* in terms of *y* (if possible).

Example

If
$$f(x) = x^3 + 2$$
, find a formula for $f^{-1}(y)$.

$$y = x^{3} + 2$$
$$x^{3} = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Therefore $x = f^{-1}(y) = \sqrt[3]{y-2}$.

• Write
$$y = f(x)$$
.

Solve this equation for *x* in terms of *y* (if possible).

Example

If
$$f(x) = x^3 + 2$$
, find a formula for $f^{-1}(y)$.

$$y = x^{3} + 2$$
$$x^{3} = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Therefore $x = f^{-1}(y) = \sqrt[3]{y-2}$. Sometimes we relabel *x* and *y* and write $f^{-1}(x) = \sqrt[3]{x-2}$.

• Write
$$y = f(x)$$
.

Solve this equation for x in terms of y (if possible).

Example

If
$$f(x) = x^3 + 2$$
, find a formula for $f^{-1}(y)$.

$$y = x^{3} + 2$$
$$x^{3} = y - 2$$
$$x = \sqrt[3]{y - 2}$$

Therefore $x = f^{-1}(y) = \sqrt[3]{y-2}$. Sometimes we relabel x and y and write $f^{-1}(x) = \sqrt[3]{x-2}$. Whenever in doubt, do not relabel anything.

$$f(\) = 2(\) + \sin 2(\) + e^{(\)/2} = 1.$$

$$f(0) = 2(0) + \sin 2(0) + e^{(0)/2}$$

= 0 + 0 + 1
= 1.

$$f(0) = 2(0) + \sin 2(0) + e^{(0)/2}$$

= 0 + 0 + 1
= 1.
Therefore $f^{-1}(1) = 0.$

• Suppose (*a*, *b*) is on the graph of *f*.

- Suppose (*a*, *b*) is on the graph of *f*.
- Then f(a) = b.

- Suppose (*a*, *b*) is on the graph of *f*.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.

- Suppose (*a*, *b*) is on the graph of *f*.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.
- Then (b, a) is on the graph of f^{-1} .

- Suppose (*a*, *b*) is on the graph of *f*.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.
- Then (b, a) is on the graph of f^{-1} .
- (b, a) is the reflection of (a, b) in the line y = x.

- Suppose (*a*, *b*) is on the graph of *f*.
- Then f(a) = b.
- Then $f^{-1}(b) = a$.
- Then (b, a) is on the graph of f^{-1} .
- (b, a) is the reflection of (a, b) in the line y = x.
- Therefore the graph of f^{-1} is obtained by reflecting the graph of f across the line y = x.

Sketch the graph of $f(x) = \sqrt{-x - 1}$ and its inverse function.

Sketch the graph of $f(x) = \sqrt{-x - 1}$ and its inverse function.

• First draw the graph of $y = \sqrt{x}$.

Sketch the graph of $f(x) = \sqrt{-x - 1}$ and its inverse function.

First draw the graph of y = √x.
y = √-x is the reflection of y = √x in the y-axis.

Sketch the graph of $f(x) = \sqrt{-x - 1}$ and its inverse function.

First draw the graph of y = √x.
y = √-x is the reflection of y = √x in the y-axis.
y = f(x) = √-x - 1 is the shift of y = √-x one unit to the left.

Sketch the graph of $f(x) = \sqrt{-x - 1}$ and its inverse function.

- First draw the graph of $y = \sqrt{x}$.
- $y = \sqrt{-x}$ is the reflection of $y = \sqrt{x}$ in the *y*-axis.
- $y = f(x) = \sqrt{-x 1}$ is the shift of $y = \sqrt{-x}$ one unit to the left.
- $y = f^{-1}(x)$ is the reflection of y = f(x) across the line y = x.

(1.2) and (6) Logarithmic Functions

Suppose
$$a > 0$$
, $a \neq 1$.

• Suppose a > 0, $a \neq 1$.

• Let
$$f(x) = a^x$$
.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore f is one-to-one.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore f is one-to-one.
- Therefore f has an inverse function, f^{-1} .

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore f is one-to-one.
- Therefore f has an inverse function, f^{-1} .

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarthmic function with base *a*, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$
Logarithmic Functions

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore f is one-to-one.
- Therefore f has an inverse function, f^{-1} .
- The graph shows $y = a^x$ for a > 1.

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarthmic function with base *a*, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$

Logarithmic Functions

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarthmic function with base *a*, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$

FreeCalc Math 140

Example

Evaluate:

• $\log_3 81 = 4$ because $3^4 = 81$.

 $\log_{10} 0.001 =$

Example

Evaluate:

- $\log_3 81 = 4$ because $3^4 = 81$.
- log₂₅ 5 =
- $\log_{10} 0.001 =$

Example

Evaluate:

- $\log_3 81 = 4$ because $3^4 = 81$.
- 2 $\log_{25} 5 = \frac{1}{2}$ because $25^{1/2} = 5$.
- $\log_{10} 0.001 =$

Example

Evaluate:

• $\log_3 81 = 4$ because $3^4 = 81$.

2
$$\log_{25} 5 = \frac{1}{2}$$
 because $25^{1/2} = 5$.

 $Oldsymbol{0}$ log₁₀ 0.001 =

Example

Evaluate:

- $\log_3 81 = 4$ because $3^4 = 81$.
- 2 $\log_{25} 5 = \frac{1}{2}$ because $25^{1/2} = 5$.
- **I** $\log_{10} 0.001 = -3$ because $10^{-3} = 0.001$.

• Suppose a > 1.

- Suppose *a* > 1.
- Domain of *a^x*:
- Range of *a^x*:
- Domain of log_a x:
- Range of log_a x:

- Suppose *a* > 1.
- Domain of *a^x*:
- Range of *a^x*:
- Domain of log_a x:
- Range of log_a x:

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of *a^x*:
- Domain of log_a x:
- Range of log_a x:

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of *a^x*:
- Domain of log_a x:
- Range of log_a x:

- Suppose a > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of log_a x:
- Range of log_a x:

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of log_a x:
- Range of log_a x:

- Suppose a > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$: (0, ∞).
- Range of log_a x:

- Suppose a > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0,\infty)$.
- Domain of $\log_a x$: (0, ∞).
- Range of log_a x:

- Suppose a > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$: (0, ∞).
- Range of $\log_a x$: \mathbb{R} .

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .
- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$: (0, ∞).
- Range of $\log_a x$: \mathbb{R} .
- $\log_a(a^x) = x$ for $x \in \mathbb{R}$.
- $a^{\log_a x} = x$ for x > 0.

Theorem (Properties of Logarithmic Functions)

If a > 1, the function $f(x) = \log_a x$ is a one-to-one, continuous, increasing function with domain $(0, \infty)$ and range \mathbb{R} . If x, y, a, b > 0 and r is any real number, then

$$log_a(xy) = log_a x + log_a y.$$

$$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y.$$

$$\log_a(x^r) = r \log_a x.$$

$$\log_{\frac{1}{a}} x = -\log_a x$$

5
$$\log_a b = \frac{1}{\log_b a}$$

$$\ \ \, \mathbf{log}_a(x) = \mathbf{log}_b \, x \, \mathbf{log}_a \, b = \frac{\mathbf{log}_b \, x}{\mathbf{log}_b \, a} = \frac{\mathbf{ln} \, x}{\mathbf{ln} \, a}$$

Use the properties of logarithms to evaluate the following:

 $\log_4 2 + \log_4 32$

 $\log_2 80 - \log_2 5$

Use the properties of logarithms to evaluate the following:

$$\log_4 2 + \log_4 32$$
$$= \log_4 (2 \cdot 32)$$

 $\log_2 80 - \log_2 5$

$$\log_4 2 + \log_4 32$$

$$= \log_4(2 \cdot 32)$$

$$= \log_4(64)$$

$$\log_2 80 - \log_2 5$$

Use the properties of logarithms to evaluate the following:

$$log_4 2 + log_4 32$$

= $log_4(2 \cdot 32)$
= $log_4(64)$
= 3
(because $4^3 = 64$.)

 $\log_2 80 - \log_2 5$

Definition (ln x)

The logarithm with base *e* is called the natural logarithm, and has a special notation:

 $\log_e x = \ln x$.

Definition (ln x)

The logarithm with base *e* is called the natural logarithm, and has a special notation:

 $v = \ln x$ v = x

 $\log_e x = \ln x$.

•
$$\ln x = y \quad \Leftrightarrow \quad e^y = x$$
.

Definition $(\ln x)$

The logarithm with base *e* is called the natural logarithm, and has a special notation:

 $y = \ln x$ v = x

$$\operatorname{og}_e x = \ln x.$$

.

•
$$\ln x = y \quad \Leftrightarrow \quad e^y = x$$
.
• $\ln(e^x) = x$ for $x \in \mathbb{R}$.

Definition (ln x)

The logarithm with base *e* is called the natural logarithm, and has a special notation:

$$og_e x = \ln x.$$

•
$$\ln x = y \quad \Leftrightarrow \quad e^y = x$$
.

•
$$\ln(e^x) = x$$
 for $x \in \mathbb{R}$.

•
$$e^{\ln x} = x$$
 for $x > 0$.
Solve the equation
$$e^{5-3x} = 10$$

Solve the equation $e^{5-3x} = 10$ $\ln(e^{5-3x}) = \ln 10$

Solve the equation
$$e^{5-3x} = 10$$

 $\ln(e^{5-3x}) = \ln 10$
 $5-3x = \ln 10$

Solve the equation
$$e^{5-3x} = 10$$

 $\ln(e^{5-3x}) = \ln 10$
 $5-3x = \ln 10$
 $3x = 5 - \ln 10$

Solve the equation
$$e^{5-3x} = 10$$

 $\ln(e^{5-3x}) = \ln 10$
 $5-3x = \ln 10$
 $3x = 5 - \ln 10$
 $x = \frac{5 - \ln 10}{3}$

Solve the equation
$$e^{5-3x} = 10$$

 $\ln(e^{5-3x}) = \ln 10$
 $5-3x = \ln 10$
 $3x = 5 - \ln 10$
 $x = \frac{5 - \ln 10}{3}$
Calculator: $x \approx 0.8991$.

Draw the graph of $y = \ln(x - 2) - 1$.

Graph y = ln(x) assumed given.

- Graph *y* = ln(*x*) assumed given.
- f(x 2) shifts graph 2 units to the right.

- Graph *y* = ln(*x*) assumed given.
- f(x 2) shifts graph 2 units to the right.
- *g*(*x*) − 1 shifts graph 1 unit down.