

Greg Maloney

with modifications by T. Milev

University of Massachusetts Boston

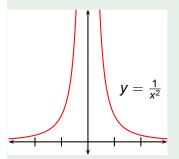
February 26, 2013

(3.4) Limits Involving Infinity

- Infinite Limits
- Limits at Infinity; Horizontal Asymptotes
- Infinite Limits at Infinity

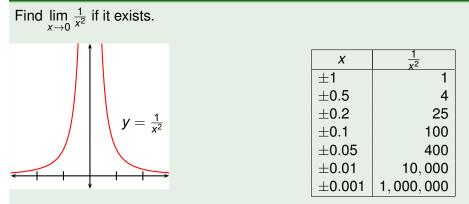
Example

Find $\lim_{x\to 0} \frac{1}{x^2}$ if it exists.



Infinite Limits

Example



• As x gets close to 0, so does x^2 , so $1/x^2$ gets large.

Infinite Limits

Example

Find $\lim_{x\to 0} \frac{1}{x^2}$ if it exists.		
	X	$\frac{1}{x^2}$
	±1	1
	±0.5	4
	±0.2	25
$y = \frac{1}{x^2}$	±0.1	100
	±0.05	400
	±0.01	10,000
	±0.001	1,000,000

- As x gets close to 0, so does x^2 , so $1/x^2$ gets large.
- $1/x^2$ can be made arbitrarily large by taking x close enough to 0.

Infinite Limits

Example

Find $\lim_{x \to 0} \frac{1}{x^2}$ if it exists.		
	X	$\frac{1}{x^2}$
	±1	1
	±0.5	4
	±0.2	25
$y = \frac{1}{x^2}$	±0.1	100
	±0.05	400
	±0.01	10,000
	±0.001	1,000,000

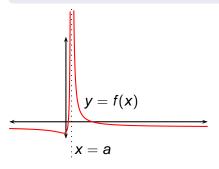
• As x gets close to 0, so does x^2 , so $1/x^2$ gets large.

• $1/x^2$ can be made arbitrarily large by taking x close enough to 0.

• f(x) doesn't approach a number, so $\lim_{x\to 0} 1/x^2$ doesn't exist. FreeCalc Math 140 Lecture 8 February 26, 2013

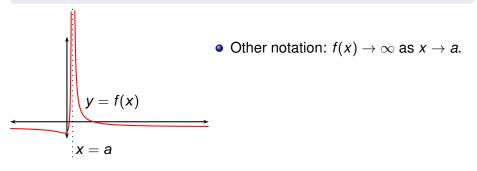
Let *f* be a function defined on both sides of *a*, except perhaps at *a*. Then

$$\lim_{x\to a} f(x) = \infty$$



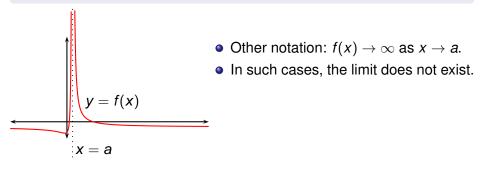
Let *f* be a function defined on both sides of *a*, except perhaps at *a*. Then

$$\lim_{x\to a} f(x) = \infty$$



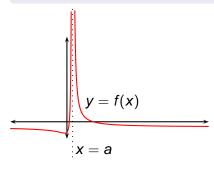
Let *f* be a function defined on both sides of *a*, except perhaps at *a*. Then

$$\lim_{x\to a} f(x) = \infty$$



Let *f* be a function defined on both sides of *a*, except perhaps at *a*. Then

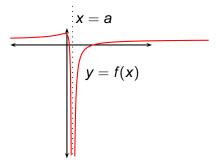
$$\lim_{x\to a} f(x) = \infty$$



- Other notation: $f(x) \to \infty$ as $x \to a$.
- In such cases, the limit does not exist.
- ∞ is not a number. The notation $\lim_{x \to a} f(x) = \infty$ expresses the particular way in which the limit doesn't exist.

Let f be a function defined on both sides of a, except perhaps at a. Then

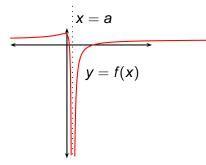
$$\lim_{x\to a}f(x)=-\infty$$



Let *f* be a function defined on both sides of *a*, except perhaps at *a*. Then

$$\lim_{x\to a}f(x)=-\infty$$

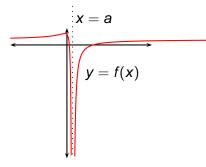
means the values of f(x) can be made arbitrarily negative by taking x sufficiently close to a, but not equal to a.



• Here, by "arbitrarily negative" we mean the number is negative with large absolute value.

Let *f* be a function defined on both sides of *a*, except perhaps at *a*. Then

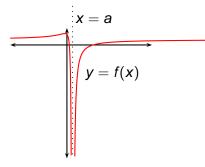
$$\lim_{x\to a}f(x)=-\infty$$



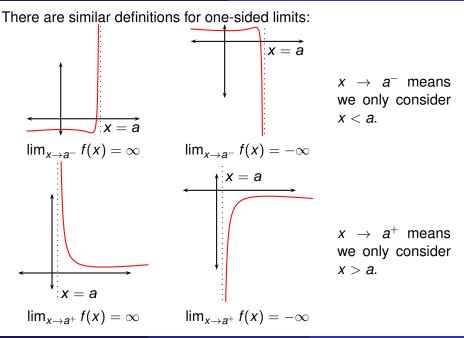
- Here, by "arbitrarily negative" we mean the number is negative with large absolute value.
- In such cases, the limit does not exist.

Let *f* be a function defined on both sides of *a*, except perhaps at *a*. Then

$$\lim_{x\to a}f(x)=-\infty$$



- Here, by "arbitrarily negative" we mean the number is negative with large absolute value.
- In such cases, the limit does not exist.
- $-\infty$ is not a number. The notation $\lim_{x \to a} f(x) = -\infty$ expresses the particular way in which the limit doesn't exist.



FreeCalc Math 140

Definition (Vertical Asymptote)

The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^-} f(x) = \infty \qquad \lim_{x \to a^+} f(x) = \infty$$
$$\lim_{x \to a^+} f(x) = -\infty \qquad \lim_{x \to a^-} f(x) = -\infty \qquad \lim_{x \to a^+} f(x) = -\infty$$

Definition (Vertical Asymptote)

The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^-} f(x) = \infty \qquad \lim_{x \to a^+} f(x) = \infty$$
$$\lim_{x \to a^+} f(x) = -\infty \qquad \lim_{x \to a^-} f(x) = -\infty \qquad \lim_{x \to a^+} f(x) = -\infty$$

For instance, the *y*-axis is a vertical asymptote for $f(x) = 1/x^2$ because $\lim_{x\to 0} f(x) = \infty$.

Find
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 and $\lim_{x\to 3^-} \frac{2x}{x-3}$.

Find
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 and $\lim_{x\to 3^-} \frac{2x}{x-3}$.

 If x is near 3 but larger than 3, the denominator x – 3 is a small positive number and 2x is close to 6.

Find $\lim_{x\to 3^+} \frac{2x}{x-3}$ and $\lim_{x\to 3^-} \frac{2x}{x-3}$.

- If x is near 3 but larger than 3, the denominator x – 3 is a small positive number and 2x is close to 6.
- So the quotient 2x/(x 3) is a large positive number.

Find
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 and $\lim_{x\to 3^-} \frac{2x}{x-3}$.
 $\lim_{x\to 3^+} 2x/(x-3) = \infty$.

- If x is near 3 but larger than 3, the denominator x – 3 is a small positive number and 2x is close to 6.
- So the quotient 2x/(x 3) is a large positive number.

Find
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 and $\lim_{x\to 3^-} \frac{2x}{x-3}$.
 $\lim_{x\to 3^+} 2x/(x-3) = \infty$.

- If x is near 3 but larger than 3, the denominator x – 3 is a small positive number and 2x is close to 6.
- So the quotient 2x/(x 3) is a large positive number.
- If x is near 3 but smaller than 3, the denominator x - 3 is a negative number with small absolute value and 2x is close to 6.

Find $\lim_{x\to 3^+} \frac{2x}{x-3}$ and $\lim_{x\to 3^-} \frac{2x}{x-3}$. $\lim_{x\to 3^+} 2x/(x-3) = \infty$.

- If x is near 3 but larger than 3, the denominator x – 3 is a small positive number and 2x is close to 6.
- So the quotient 2x/(x 3) is a large positive number.
- If x is near 3 but smaller than 3, the denominator x - 3 is a negative number with small absolute value and 2x is close to 6.
- So 2x/(x 3) is a negative number with large absolute value.

Find
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 and $\lim_{x\to 3^-} \frac{2x}{x-3}$.
 $\lim_{x\to 3^+} 2x/(x-3) = \infty$.
 $\lim_{x\to 3^-} 2x/(x-3) = -\infty$.

- If x is near 3 but larger than 3, the denominator x – 3 is a small positive number and 2x is close to 6.
- So the quotient 2x/(x 3) is a large positive number.
- If x is near 3 but smaller than 3, the denominator x - 3 is a negative number with small absolute value and 2x is close to 6.
- So 2x/(x 3) is a negative number with large absolute value.

5

Find
$$\lim_{x\to 3^+} \frac{2x}{x-3}$$
 and $\lim_{x\to 3^-} \frac{2x}{x-3}$
 $\lim_{x\to 3^+} 2x/(x-3) = \infty$.
 $\lim_{x\to 3^-} 2x/(x-3) = -\infty$.

- If x is near 3 but larger than 3, the denominator x - 3 is a small positive number and 2x is close to 6.
- So the quotient 2x/(x-3) is a large positive number.
- If x is near 3 but smaller than 3, the denominator x - 3 is a negative number with small absolute value and 2x is close to 6.
- So 2x/(x-3) is a negative number with large absolute value.
- x = 3 is a vertical asymptote for f(x) = 2x/(x-3).

-3

Lecture 8

$$\lim_{x\to a} f(x)$$

If we plug in a and get

$$f(a) = rac{ ext{something different from 0}}{0},$$

then the limit will be DNE, ∞ , or $-\infty$.

To determine what the answer is, this is what we do:

- Factor.
- Determine if each factor is positive or negative.
- An odd number of negative factors means the limit is $-\infty$.
- An even number of negative factors means the limit is ∞ .
- For a two-sided limit, the answer is DNE unless the left limit and the right limit are either both ∞ or both $-\infty$.

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1:
$$\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = ----$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{-2}$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{-2}$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{x(x - 3)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{x^2 - 3x + 2}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1:
$$\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\to \frac{()}{()}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\to \frac{(+)(-)}{(-)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\to \frac{(+)(-)}{(-)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\to \frac{(+)(-)}{(-)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\rightarrow \frac{(+)(-)}{(-)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\rightarrow \frac{(+)(-)}{(-)(-)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\to \frac{(+)(-)}{(-)(-)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\rightarrow \frac{(+)(-)}{(-)(+)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\rightarrow \frac{(+)(-)}{(-)(+)}$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\rightarrow \frac{(+)(-)}{(-)(+)}$$
$$= (+)$$

Find
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2}$$

Plug in 1: $\frac{(1)^2 - 3(1)}{(1)^2 - 3(1) + 2} = \frac{-2}{0}$

Factor:
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x(x - 3)}{(x - 2)(x - 1)}$$
$$\rightarrow \frac{(+)(-)}{(-)(+)}$$
$$= (+)$$
Therefore
$$\lim_{x \to 1^+} \frac{x^2 - 3x}{x^2 - 3x + 2} = +\infty.$$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = -$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{-1}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{-1}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} -$$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x^3 + 2x^2 + x}$$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x^3 + 2x^2 + x}$$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

 $\rightarrow \frac{()()}{()()}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

 $\rightarrow \frac{(+)(-)}{(-)(-)}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

 $\rightarrow \frac{(+)(-)}{(-)}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

 $\rightarrow \frac{(+)(+)}{(-)(-)}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

 $\rightarrow \frac{(+)(+)}{(-)(-)}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

 $\rightarrow \frac{(+)(+)}{(-)(-)}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

 $\rightarrow \frac{(+)(+)}{(-)(-)}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$

 $\rightarrow \frac{(+)(+)}{(-)(+)}$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$
$$\rightarrow \frac{(+)(+)}{(-)(+)}$$

Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

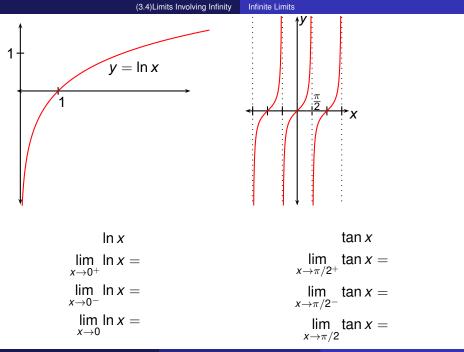
Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$
$$\rightarrow \frac{(+)(+)}{(-)(+)}$$
$$= (-)$$

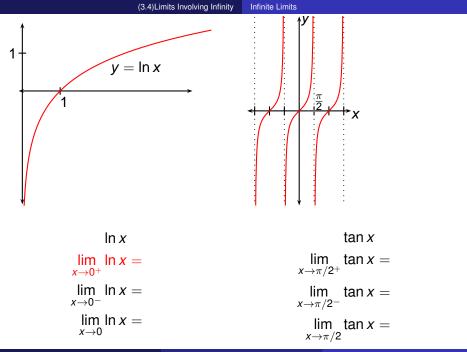
Find
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x}$$

Plug in -1: $\frac{(-1)^2 + 5(-1) + 6}{(-1)^3 + 2(-1)^2 + (-1)} = \frac{2}{0}$

Factor:
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = \lim_{x \to -1} \frac{(x+2)(x+3)}{x(x+1)^2}$$
$$\rightarrow \frac{(+)(+)}{(-)(+)}$$
$$= (-)$$
Therefore
$$\lim_{x \to -1} \frac{x^2 + 5x + 6}{x^3 + 2x^2 + x} = -\infty.$$

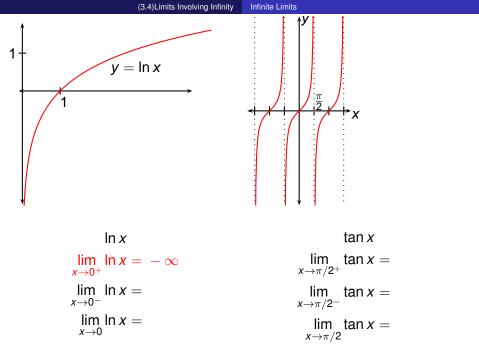


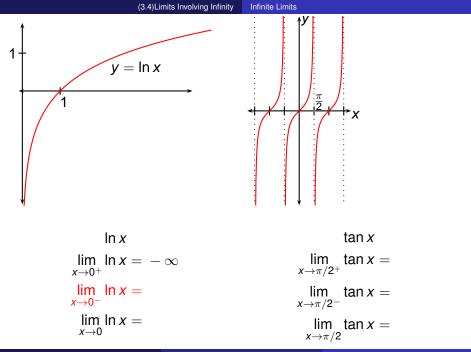
FreeCalc Math 140



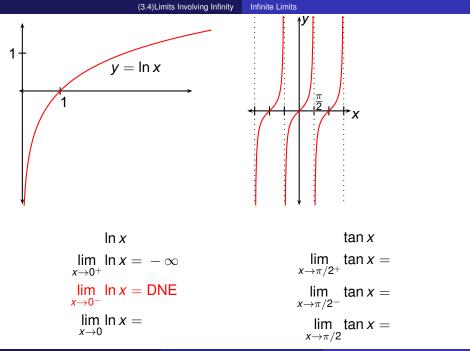
FreeCalc Math 140

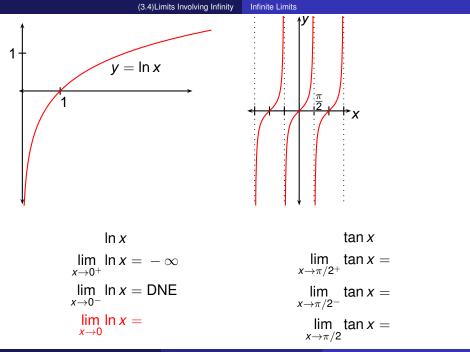
Lecture 8





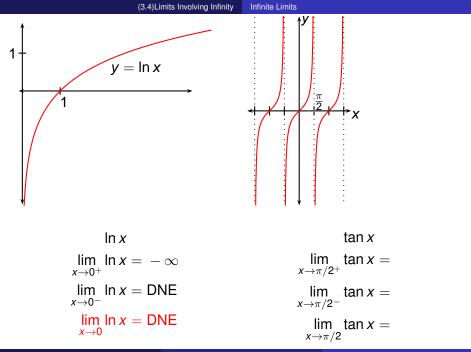
Lecture 8





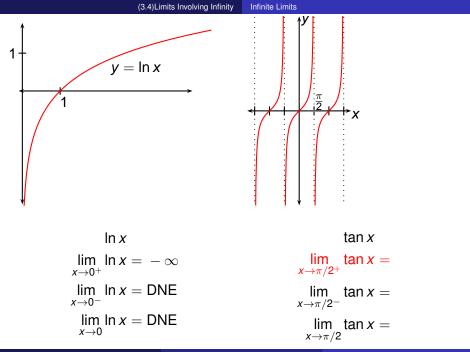
Lecture 8

February 26, 2013



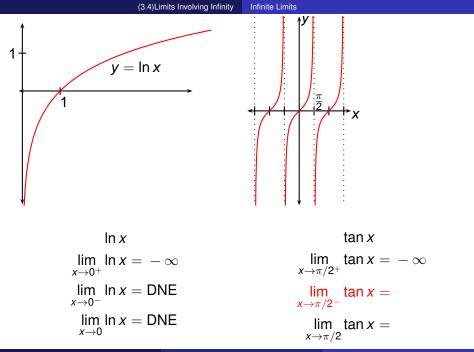
Lecture 8

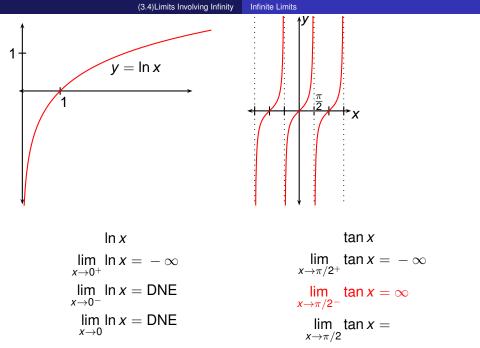
February 26, 2013





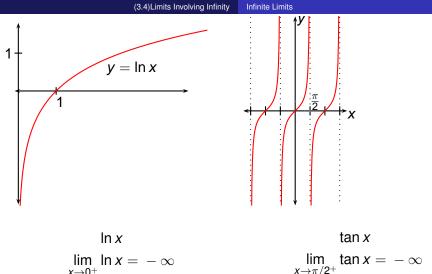
Lecture 8





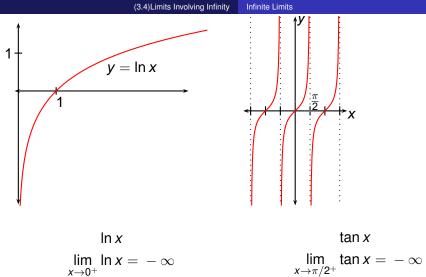
Lecture 8

February 26, 2013



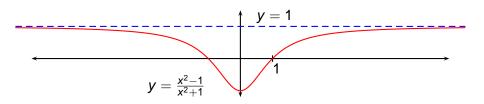
$$\lim_{x \to 0^{-}} \ln x = \text{DNE}$$
$$\lim_{x \to 0} \ln x = \text{DNE}$$

 $\lim_{x \to \pi/2^{+}} \tan x = -\infty$ $\lim_{x \to \pi/2^{-}} \tan x = \infty$ $\lim_{x \to \pi/2^{-}} \tan x =$

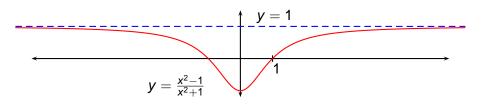


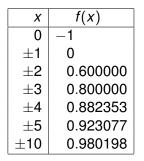
$$\lim_{x \to 0^{-}} \ln x = \mathsf{DNE}$$
$$\lim_{x \to 0} \ln x = \mathsf{DNE}$$

 $\lim_{x \to \pi/2^{+}} \tan x = -\infty$ $\lim_{x \to \pi/2^{-}} \tan x = \infty$ $\lim_{x \to \pi/2^{-}} \tan x = \mathsf{DNE}$

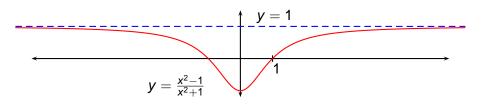


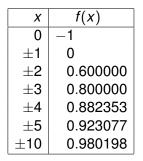
• Consider $f(x) = \frac{x^2-1}{x^2+1}$ as x becomes large.



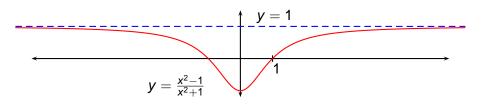


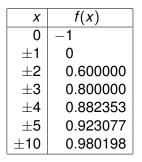
- Consider $f(x) = \frac{x^2-1}{x^2+1}$ as x becomes large.
- The values of f(x) get closer and closer to 1.



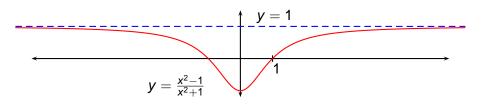


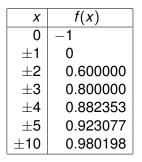
- Consider $f(x) = \frac{x^2 1}{x^2 + 1}$ as x becomes large.
- The values of f(x) get closer and closer to 1.
- We express this by writing $\lim_{x\to\infty} f(x) = 1$.





- Consider $f(x) = \frac{x^2-1}{x^2+1}$ as x becomes large.
- The values of f(x) get closer and closer to 1.
- We express this by writing $\lim_{x\to\infty} f(x) = 1$.
- When x is large negative, f(x) is also near 1.





- Consider $f(x) = \frac{x^2 1}{x^2 + 1}$ as x becomes large.
- The values of f(x) get closer and closer to 1.
- We express this by writing $\lim_{x\to\infty} f(x) = 1$.
- When x is large negative, f(x) is also near 1.
- We express this by writing $\lim_{x \to -\infty} f(x) = 1$.

Let *f* be a function defined on some interval (a, ∞) . Then

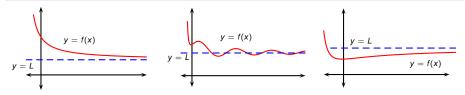
$$\lim_{x\to\infty}f(x)=L$$

means that the values of f can be made arbitrarily close to L by taking x sufficiently large.

Let *f* be a function defined on some interval (a, ∞) . Then

 $\lim_{x\to\infty}f(x)=L$

means that the values of f can be made arbitrarily close to L by taking x sufficiently large.

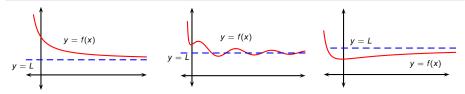


• There are many ways that this can happen.

Let *f* be a function defined on some interval (a, ∞) . Then

 $\lim_{x\to\infty}f(x)=L$

means that the values of f can be made arbitrarily close to L by taking x sufficiently large.



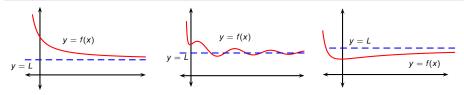
• There are many ways that this can happen.

• Other notation: $f(x) \rightarrow L$ as $x \rightarrow \infty$.

Let *f* be a function defined on some interval (a, ∞) . Then

 $\lim_{x\to\infty}f(x)=L$

means that the values of f can be made arbitrarily close to L by taking x sufficiently large.



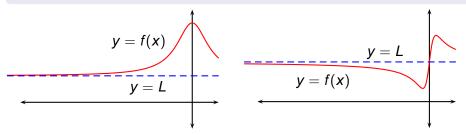
There are many ways that this can happen.

- Other notation: $f(x) \rightarrow L$ as $x \rightarrow \infty$.
- ∞ is not a number.

Let *f* be a function defined on some interval $(-\infty, b)$. Then

$$\lim_{x\to-\infty}f(x)=L$$

means that the values of f can be made arbitrarily close to L by taking x sufficiently large negative.



The line y = L is called a horizontal asymptote of *f* if either

$$\lim_{x\to\infty} f(x) = L \quad \text{or} \quad \lim_{x\to-\infty} f(x) = L.$$

The line y = L is called a horizontal asymptote of *f* if either

$$\lim_{x\to\infty} f(x) = L \quad \text{or} \quad \lim_{x\to-\infty} f(x) = L.$$

• For example, y = 1 is a horizontal asymptote for $f(x) = \frac{x^2 - 1}{x^2 + 1}$.

The line y = L is called a horizontal asymptote of *f* if either

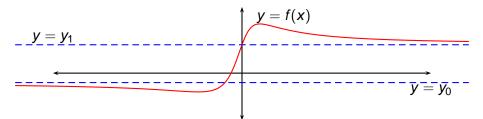
$$\lim_{x\to\infty} f(x) = L \qquad \text{or} \qquad \lim_{x\to-\infty} f(x) = L.$$

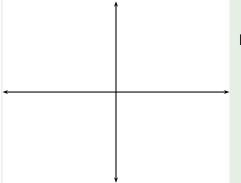
- For example, y = 1 is a horizontal asymptote for $f(x) = \frac{x^2-1}{x^2+1}$.
- Can a function have two horizontal asymptotes?

The line y = L is called a horizontal asymptote of *f* if either

$$\lim_{x\to\infty} f(x) = L \quad \text{or} \quad \lim_{x\to-\infty} f(x) = L.$$

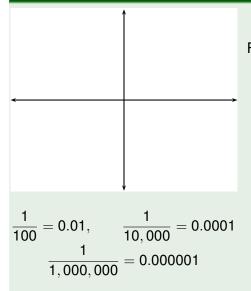
- For example, y = 1 is a horizontal asymptote for $f(x) = \frac{x^2-1}{x^2+1}$.
- Can a function have two horizontal asymptotes? Yes.





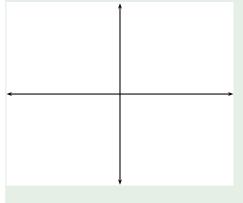
Find
$$\lim_{x\to\infty}\frac{1}{x}$$
 and $\lim_{x\to-\infty}\frac{1}{x}$.

FreeCalc Math 140



Find $\lim_{x \to \infty} \frac{1}{x}$ and $\lim_{x \to -\infty} \frac{1}{x}$. • When *x* is large, $\frac{1}{x}$ is small.

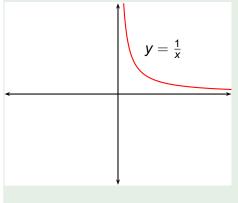
FreeCalc Math 140



Find
$$\lim_{x\to\infty} \frac{1}{x}$$
 and $\lim_{x\to-\infty} \frac{1}{x}$.

- When x is large, $\frac{1}{x}$ is small.
- By taking x large enough, we can make $\frac{1}{x}$ as small as we like.

$$\frac{1}{100} = 0.01, \qquad \frac{1}{10,000} = 0.0001$$
$$\frac{1}{1,000,000} = 0.000001$$

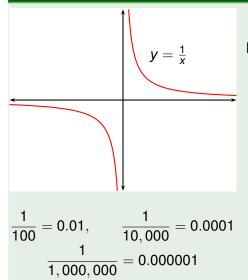


Find
$$\lim_{x\to\infty} \frac{1}{x}$$
 and $\lim_{x\to-\infty} \frac{1}{x}$.

- When x is large, $\frac{1}{x}$ is small.
- By taking x large enough, we can make $\frac{1}{x}$ as small as we like.

• Therefore
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
.

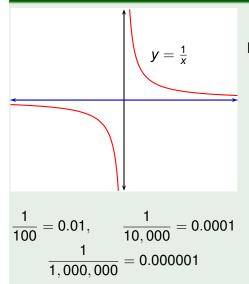
$$\frac{1}{100} = 0.01, \qquad \frac{1}{10,000} = 0.0001$$
$$\frac{1}{1,000,000} = 0.000001$$



Find $\lim_{x\to\infty}\frac{1}{x}$ and $\lim_{x\to-\infty}\frac{1}{x}$.

- When x is large, $\frac{1}{x}$ is small.
- By taking x large enough, we can make $\frac{1}{x}$ as small as we like.
- Therefore $\lim_{x\to\infty}\frac{1}{x}=0.$

• Similarly,
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$
.



Find $\lim_{x\to\infty} \frac{1}{x}$ and $\lim_{x\to-\infty} \frac{1}{x}$.

- When x is large, $\frac{1}{x}$ is small.
- By taking x large enough, we can make $\frac{1}{x}$ as small as we like.
- Therefore $\lim_{x\to\infty} \frac{1}{x} = 0$.
- Similarly, $\lim_{x \to -\infty} \frac{1}{x} = 0$.
- y = 0 (the *x*-axis) is a horizontal asymptote for the curve $y = \frac{1}{x}$.

We can generalize the previous example to other powers of *x*:

Theorem (Infinite Limits of $\frac{1}{x^{\prime}}$)

If r > 0 is a rational number, then

$$\lim_{x\to\infty}\frac{1}{x^r}=0.$$

If r > 0 is an integer

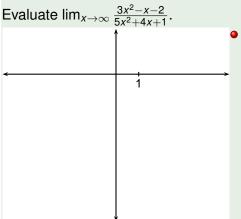
$$\lim_{x\to-\infty}\frac{1}{x^r}=0.$$

Evaluate $\lim_{x\to\infty} \frac{3x^2-x-2}{5x^2+4x+1}$.	
,	
*	
	1
	k i i i i i i i i i i i i i i i i i i i

$$\lim_{x\to\infty}\frac{3x^2-x-2}{5x^2+4x+1}$$

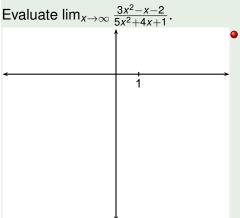
FreeCalc Math 140

February 26, 2013



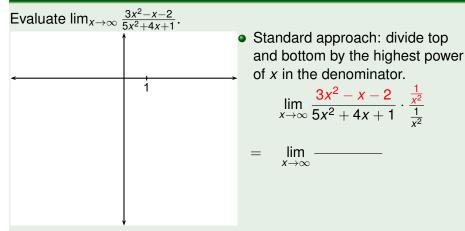
Standard approach: divide top and bottom by the highest power of *x* in the denominator.

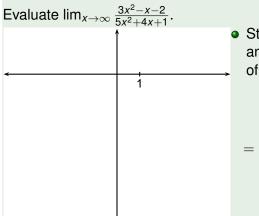
$$\lim_{x\to\infty}\frac{3x^2-x-2}{5x^2+4x+1}$$



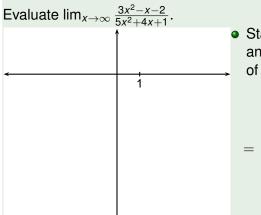
Standard approach: divide top and bottom by the highest power of *x* in the denominator.

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

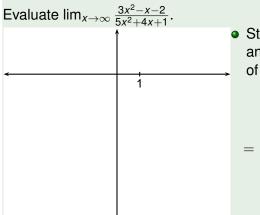




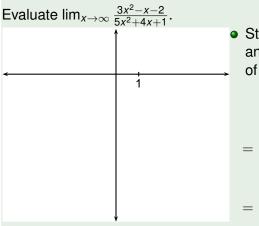
$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$
$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{\frac{1}{x^2}}$$



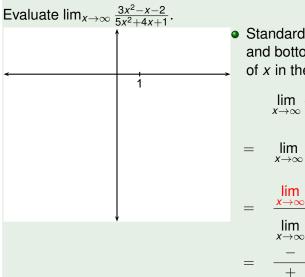
$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$
$$\lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{\frac{1}{x^2}}$$



$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$
$$\lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$



$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$
$$\lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$
$$\frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$



 Standard approach: divide top and bottom by the highest power of *x* in the denominator.

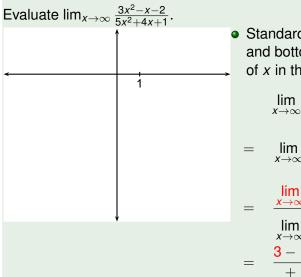
$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

+

FreeCalc Math 140



 Standard approach: divide top and bottom by the highest power of *x* in the denominator.

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

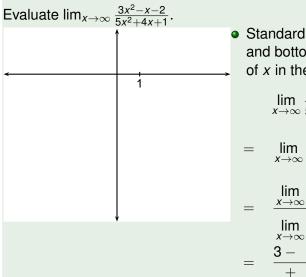
$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - -}{+ + +}$$

FreeCalc Math 140

Lecture 8



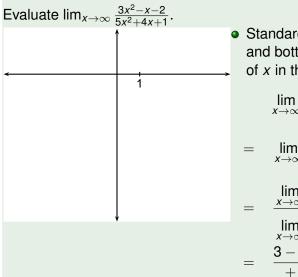
$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$\lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2 \lim_{x \to \infty} \frac{1}{x^2}$$

$$\lim_{x \to \infty} 5 + 4 \lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}$$

$$\frac{3 - -}{+ + +}$$



 Standard approach: divide top and bottom by the highest power of *x* in the denominator.

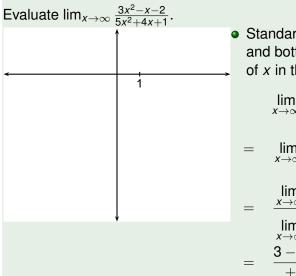
$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - \frac{1}{x + 1}}{\frac{1}{x + 1}}$$

FreeCalc Math 140

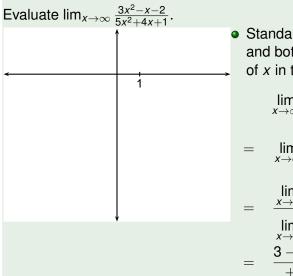


$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - \frac{1}{x + x}}{\frac{1}{x + x}}$$

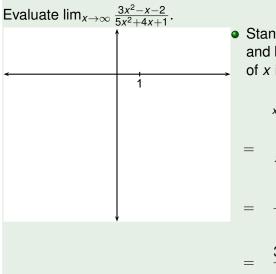


$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

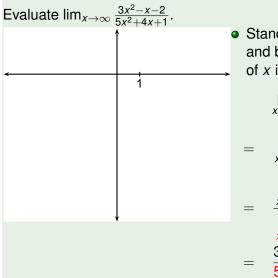
$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{+ + 1}$$



$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$
$$\lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$
$$\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2 \lim_{x \to \infty} \frac{1}{x^2}$$
$$\lim_{x \to \infty} 5 + 4 \lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}$$
$$\frac{3 - 0 - 0}{+ + +}$$

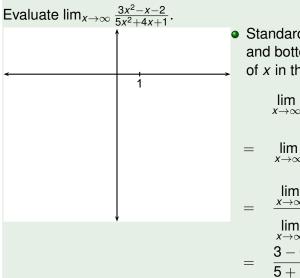


$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{5 + \frac{1}{x^2}}$$

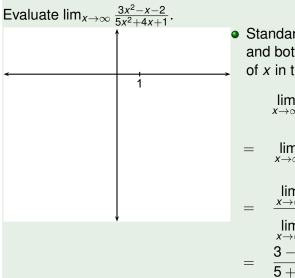


$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{5 + \frac{1}{x^2}}$$

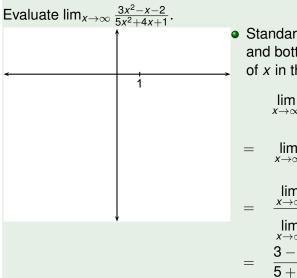


$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{5 + 0 + 1}$$

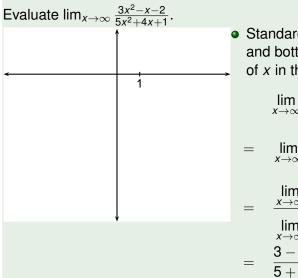


$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{5 + 0 + 1}$$



$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{5 + 0 + 0}$$

Evaluate $\lim_{x\to\infty} \frac{3x^2-x-2}{5x^2+4x+1}$. $y = \frac{3}{5} = 0.6$ 1

 Standard approach: divide top and bottom by the highest power of *x* in the denominator.

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

$$= \frac{3 - 0 - 0}{5 + 0 + 0} = \frac{3}{5}$$

FreeCalc Math 140

Evaluate $\lim_{x\to\infty} \frac{3x^2-x-2}{5x^2+4x+1}$. $y = \frac{3}{5} = 0.6$

• A similar calculation shows that the limit as $x \to -\infty$ is also $\frac{3}{5}$.

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$

$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$

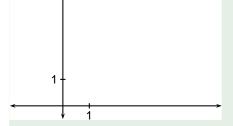
$$= \frac{3 - 0 - 0}{5 + 0 + 0} = \frac{3}{5}$$

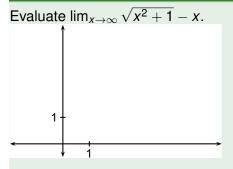
Evaluate $\lim_{x\to c}$	$\infty \frac{3x^2-x-2}{5x^2+4x+1}$.
	$y = \frac{3}{5} = 0.6$
	$y = \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$

• A similar calculation shows that the limit as $x \to -\infty$ is also $\frac{3}{5}$.

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$
$$\lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$
$$\frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}}$$
$$\frac{3 - 0 - 0}{5 + 0 + 0} = \frac{3}{5}$$

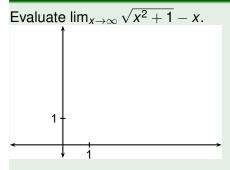
Evaluate $\lim_{x\to\infty} \sqrt{x^2+1} - x$.





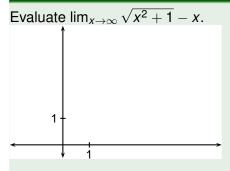
$$\lim_{x\to\infty}\left(\sqrt{x^2+1}-x\right)$$

- $\sqrt{x^2 + 1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.



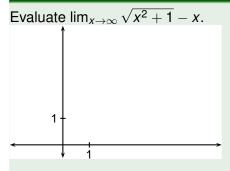
- $\sqrt{x^2 + 1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.

$$\lim_{x\to\infty}\left(\sqrt{x^2+1}-x\right)$$



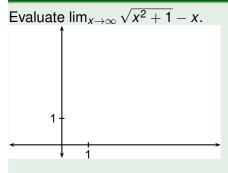
- $\sqrt{x^2 + 1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$



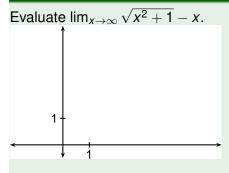
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x}$$

- $\sqrt{x^2 + 1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.



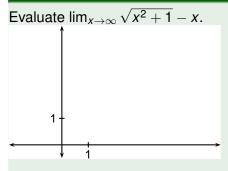
- $\sqrt{x^2 + 1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x}$$



- $\sqrt{x^2 + 1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.
- Divide top & bottom by *x*.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x}$$
$$= \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}$$



- $\sqrt{x^2 + 1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.
- Divide top & bottom by *x*.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$

=
$$\lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x}$$

=
$$\lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}$$

=
$$\lim_{x \to \infty} \frac{\frac{1}{x}}{\sqrt{1 + \frac{1}{x^2}} + 1}$$

Evaluate
$$\lim_{x\to\infty} \sqrt{x^2 + 1} - x$$
.
 $y = \sqrt{x^2 + 1} - x$

- $\sqrt{x^2 + 1} \to \infty$ and $x \to \infty$ as $x \to \infty$.
- It isn't clear what happens to the difference.
- Divide top & bottom by x.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x}$$

=
$$\lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{\sqrt{x^2 + 1} + x}$$

=
$$\lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}$$

=
$$\lim_{x \to \infty} \frac{\frac{1}{x}}{\sqrt{1 + \frac{1}{x^2} + 1}}$$

=
$$\frac{0}{\sqrt{1 + 0} + 1} = 0$$

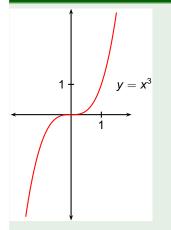
Infinite Limits at Infinity

We write

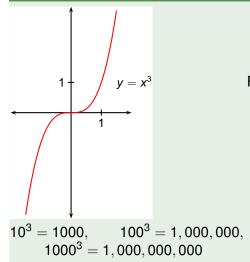
$$\lim_{x\to\infty}f(x)=\infty$$

to mean that f(x) becomes large as x becomes large. We attach similar meaning to

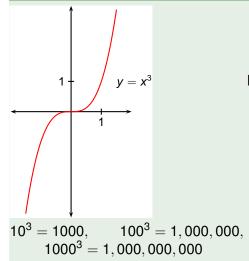
$$\lim_{x \to \infty} f(x) = -\infty, \qquad \lim_{x \to -\infty} f(x) = \infty, \qquad \lim_{x \to -\infty} = -\infty$$



Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$.

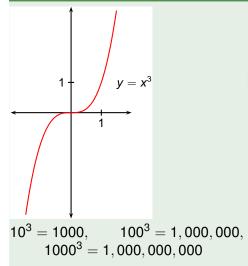


Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$. • When x is large, so is x^3 .



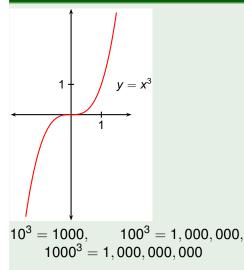
Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$.

- When x is large, so is x^3 .
- By taking *x* large enough, we can make *x*³ as large as we like.



Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$.

- When x is large, so is x^3 .
- By taking *x* large enough, we can make *x*³ as large as we like.
- Therefore $\lim_{x\to\infty} x^3 = \infty$.



Find $\lim_{x\to\infty} x^3$ and $\lim_{x\to-\infty} x^3$.

- When x is large, so is x^3 .
- By taking *x* large enough, we can make *x*³ as large as we like.
- Therefore $\lim_{x\to\infty} x^3 = \infty$.

• Similarly, $\lim_{x\to -\infty} x^3 = -\infty$.

Find
$$\lim_{x\to\infty}(x^2-x)$$
.

Find
$$\lim_{x\to\infty} (x^2 - x)$$
.
• WRONG: $\lim_{x\to\infty} (x^2 - x) = \lim_{x\to\infty} x^2 - \lim_{x\to\infty} x = \infty - \infty = 0$.

Find $\lim_{x\to\infty}(x^2-x)$.

• WRONG: $\lim_{x\to\infty} (x^2 - x) = \lim_{x\to\infty} x^2 - \lim_{x\to\infty} x = \infty - \infty = 0.$

 $\bullet\,$ We can't use the limit laws in this way with ∞ because ∞ isn't a number.

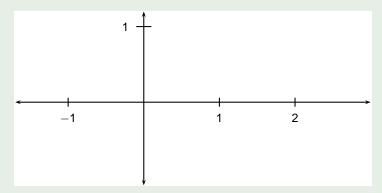
Find $\lim_{x\to\infty}(x^2-x)$.

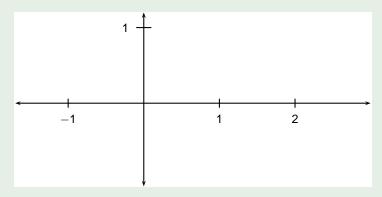
• WRONG: $\lim_{x\to\infty} (x^2 - x) = \lim_{x\to\infty} x^2 - \lim_{x\to\infty} x = \infty - \infty = 0.$

- $\bullet\,$ We can't use the limit laws in this way with ∞ because ∞ isn't a number.
- Instead: $\lim_{x\to\infty} (x^2 x) = \lim_{x\to\infty} x(x-1) = \infty$.

Find $\lim_{x\to\infty}(x^2-x)$.

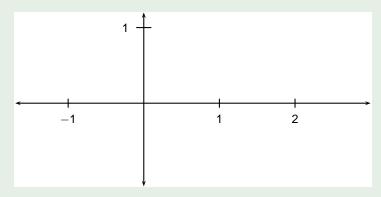
- WRONG: $\lim_{x\to\infty} (x^2 x) = \lim_{x\to\infty} x^2 \lim_{x\to\infty} x = \infty \infty = 0.$
- $\bullet\,$ We can't use the limit laws in this way with ∞ because ∞ isn't a number.
- Instead: $\lim_{x\to\infty} (x^2 x) = \lim_{x\to\infty} x(x-1) = \infty$.
- This is because x and x 1 both become arbitrarily large as $x \to \infty$.





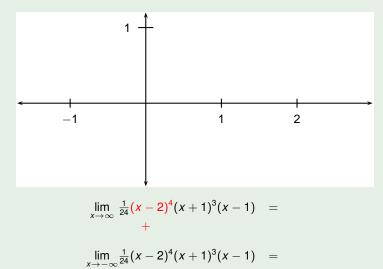
$$\lim_{x\to\infty} \frac{1}{24} (x-2)^4 (x+1)^3 (x-1) =$$

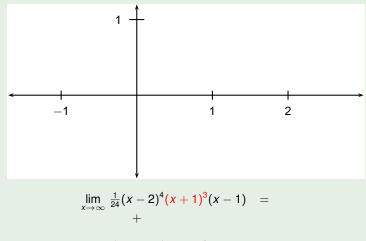
$$\lim_{x \to -\infty} \frac{1}{24} (x-2)^4 (x+1)^3 (x-1) =$$



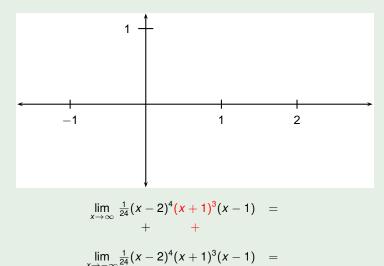
$$\lim_{x \to \infty} \frac{1}{24} (x-2)^4 (x+1)^3 (x-1) =$$

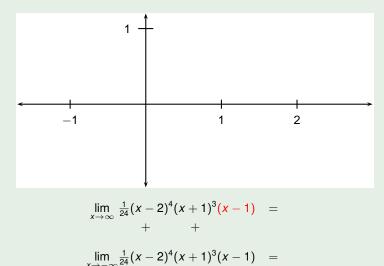
$$\lim_{x \to -\infty} \frac{1}{24} (x-2)^4 (x+1)^3 (x-1) =$$

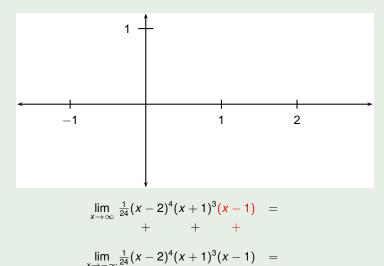


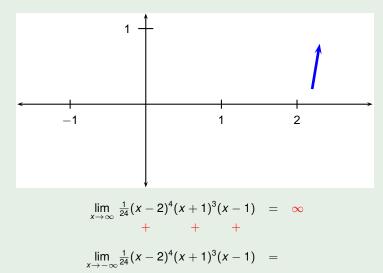


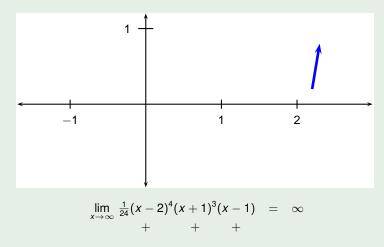
$$\lim_{x \to -\infty} \frac{1}{24} (x-2)^4 (x+1)^3 (x-1) =$$





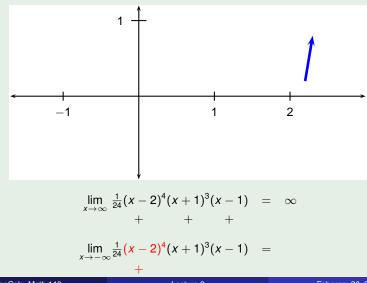






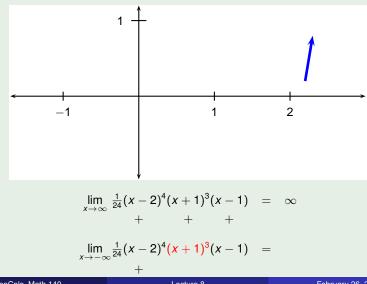
$$\lim_{x \to -\infty} \frac{1}{24} (x-2)^4 (x+1)^3 (x-1) =$$

Find the limits as $x \to \infty$ and $x \to -\infty$ of $y = \frac{1}{24}(x-2)^4(x+1)^3(x-1)$.



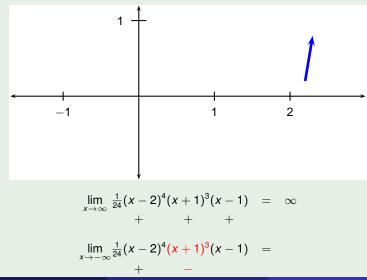
FreeCalc Math 140

Find the limits as $x \to \infty$ and $x \to -\infty$ of $y = \frac{1}{24}(x-2)^4(x+1)^3(x-1)$.



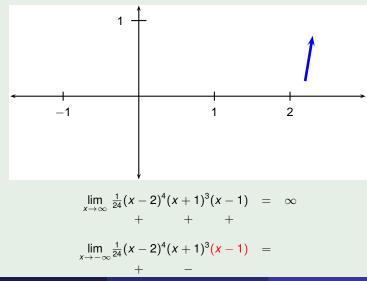
FreeCalc Math 140

Find the limits as $x \to \infty$ and $x \to -\infty$ of $y = \frac{1}{24}(x-2)^4(x+1)^3(x-1)$.



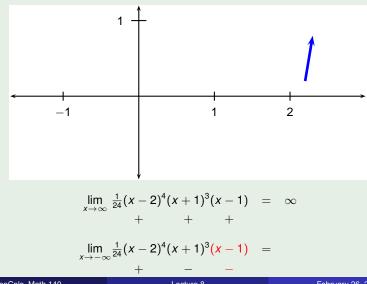
FreeCalc Math 140

Find the limits as $x \to \infty$ and $x \to -\infty$ of $y = \frac{1}{24}(x-2)^4(x+1)^3(x-1)$.



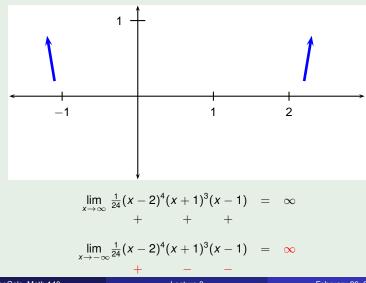
FreeCalc Math 140

Find the limits as $x \to \infty$ and $x \to -\infty$ of $y = \frac{1}{24}(x-2)^4(x+1)^3(x-1)$.



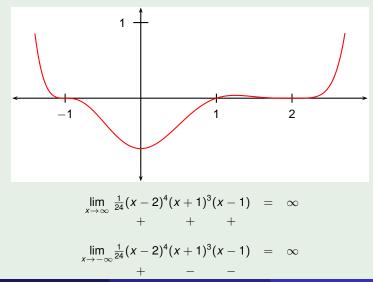
FreeCalc Math 140

Find the limits as $x \to \infty$ and $x \to -\infty$ of $y = \frac{1}{24}(x-2)^4(x+1)^3(x-1)$.



FreeCalc Math 140

Find the limits as $x \to \infty$ and $x \to -\infty$ of $y = \frac{1}{24}(x-2)^4(x+1)^3(x-1)$.



FreeCalc Math 140